综述

机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展

展开
  • 上海交通大学医学院附属瑞金医院妇产科,上海 200025

收稿日期: 2022-02-20

  网络出版日期: 2022-11-07

基金资助

国家自然科学基金面上项目(82172601);上海市科委医学创新项目(20Y11914000)

Research progress on the application of machine learning in assisted ultrasound diagnosis of adnexal masses

Expand
  • Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Received date: 2022-02-20

  Online published: 2022-11-07

摘要

卵巢癌是主要的附件恶性肿瘤,是全球女性癌症相关死亡的第二大常见原因,约75%的患者被诊断时已属晚期,5年生存率低于45%。因此,对附件肿块进行准确的非侵入性良恶性鉴别,对于患者的预后及生存质量至关重要。近年来,人工智能领域进展迅速,机器学习作为人工智能领域的一个分支,具有从大量复杂数据中进行高效学习的能力,逻辑回归、人工神经网络、支持向量机、深度卷积神经网络等算法已被应用于辅助超声鉴别附件肿块良恶性诊断中,并具有良好的诊断效能。本文将对机器学习算法在辅助超声鉴别附件肿块良恶性中应用价值的研究进展进行综述。

本文引用格式

何新, 陈慧, 冯炜炜 . 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022 , 21(04) : 541 -546 . DOI: 10.16150/j.1671-2870.2022.04.022

Abstract

Ovarian cancer is the second most common cause of gynecologic cancer death in women around the world. Around 75% of patients present with stage Ⅲ/Ⅳ disease at diagnosis, with five-year survival rates below 45%. Ovarian cancer is the main adnexal malignant mass. Thus, accurate non-invasive risk stratification of adnexal masses is essential for optimal management and outcomes. In recent years, the field of artificial intelligence is developing rapidly. As a branch of artificial intelligence, machine learning could learn efficiently from complex and large amounts of data, which has infinite potential to differentiate benign and malignant adnexal masses. Logistic regression(LR), artificial neural network (ANN), support vector machine (SVM), deep learning convolution neural networks (DCNN) have been widely applied in this field, and achieved good diagnostic performance. This paper will review the history and progress of machine learning in ultrasound diagnosis of benign and malignant adnexal masses.

参考文献

[1] Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer[J]. Best Pract Res Clin Obstet Gynaecol, 2017, 41:3-14.
[2] Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: Evolution of management in the era of precision medicine[J]. CA Cancer J Clin, 2019, 69(4):280-304.
[3] Fischerova D. Ultrasound scanning of the pelvis and abdomen for staging of gynecological tumors: a review[J]. Ultrasound Obstet Gynecol, 2011, 38(3):246-266.
[4] Tavoraitè I, Kronlachner L, Opolskienè G, et al. Ultrasound Assessment of Adnexal Pathology: Standardized Methods and Different Levels of Experience[J]. Medicina (Kaunas), 2021, 57(7):708.
[5] Timmerman D, Planchamp F, Bourne T, et al. ESGO/ISUOG/IOTA/ESGE Consensus Statement on pre-operative diagnosis of ovarian tumors[J]. Int J Gynecol Cancer, 2021, 31(7):961-982.
[6] Timmerman D, Valentin L, Bourne TH, et al. Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) Group[J]. Ultrasound Obstet Gynecol, 2000, 16(5):500-505.
[7] Timmerman D, Testa AC, Bourne T, et al. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group[J]. J Clin Oncol, 2005, 23(34):8794-8801.
[8] Timmerman D, Testa AC, Bourne T, et al. Simple ultrasound-based rules for the diagnosis of ovarian cancer[J]. Ultrasound Obstet Gynecol, 2008, 31(6):681-690.
[9] van Calster B, van Hoorde K, Valentin L, et al. Evalua-ting the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study[J]. BMJ, 2014, 349:g5920.
[10] Amor F, Vaccaro H, Alcázar JL, et al. Gynecologic ima-ging reporting and data system: a new proposal for classifying adnexal masses on the basis of sonographic findings[J]. J Ultrasound Med, 2009, 28(3):285-291.
[11] Andreotti RF, Timmerman D, Strachowski LM, et al. O-RADS US Risk Stratification and Management System: A Consensus Guideline from the ACR Ovarian-Adnexal Reporting and Data System Committee[J]. Radiology, 2020, 294(1):168-185.
[12] Awad M, Khanna R. Machine Learning[M]// Efficient Learning Machines. CA:Apress, Berkeley, 2015:1-18.
[13] Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine[J]. N Engl J Med, 2019, 380(14):1347-1358.
[14] Brattain LJ, Telfer BA, Dhyani M, et al. Machine learning for medical ultrasound: status, methods, and future opportunities[J]. Abdom Radiol(NY), 2018, 43(4):786-799.
[15] Moustafa AF, Cary TW, Sultan LR, et al. Color Doppler Ultrasound Improves Machine Learning Diagnosis of Breast Cancer[J]. Diagnostics (Basel), 2020, 10(9):631.
[16] Zhao CK, Ren TT, Yin YF, et al. A Comparative Analysis of Two Machine Learning-Based Diagnostic Patterns with Thyroid Imaging Reporting and Data System for Thyroid Nodules: Diagnostic Performance and Unnecessary Biopsy Rate[J]. Thyroid, 2021, 31(3):470-481.
[17] Sone K, Toyohara Y, Taguchi A, et al. Application of artificial intelligence in gynecologic malignancies: A review[J]. J Obstet Gynaecol Res, 2021, 47(8):2577-2585.
[18] Xie HN, Wang N, He M, et al. Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal[J]. Ultrasound Obstet Gynecol, 2020, 56(4):579-587.
[19] Al′Aref SJ, Anchouche K, Singh G, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging[J]. Eur Heart J, 2019, 40(24):1975-1986.
[20] Verhulst PF. Recherches mathématiques sur la loi d′acroissement de la population[J]. Nouveaux mémoires de l′académie royale des sciences et belles-lettres de Bruxel-les, 1845, 18:1-38.
[21] Namburi S. Logistic regression with conjugate gradient descent for document classification[D]. Kansas State University, 2016.
[22] Meys EM, Kaijser J, Kruitwagen RF, et al. Subjective assessment versus ultrasound models to diagnose ovarian cancer: A systematic review and meta-analysis[J]. Eur J Cancer, 2016, 58:17-29.
[23] Biagiotti R, Desii C, Vanzi E, et al. Predicting ovarian malignancy: application of artificial neural networks to transvaginal and color Doppler flow US[J]. Radiology, 1999, 210(2):399-403.
[24] Timmerman D, Verrelst H, Bourne TH, et al. Artificial neural network models for the preoperative discrimination between malignant and benign adnexal masses[J]. Ultrasound Obstet Gynecol, 1999, 13(1):17-25.
[25] Moszynski R, Szpurek D, Smolen A, et al. Comparison of diagnostic usefulness of predictive models in preliminary differentiation of adnexal masses[J]. Int J Gynecol Cancer, 2006, 16(1):45-51.
[26] McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. 1943[J]. Bull Math Biol, 1990, 52(1-2):99-115.
[27] Moguerza JM, Muoz Alberto. Support Vector Machines with Applications 1[J]. Statistical Science, 2006, 21(3):358-362.
[28] Khazendar S, Sayasneh A, Al-Assam H, et al. Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator[J]. Facts Views Vis Obgyn, 2015, 7(1):7-15.
[29] Acharya UR, Sree SV, Krishnan MM, et al. Ovarian tumor characterization using 3D ultrasound[J]. Technol Cancer Res Treat, 2012, 11(6):543-552.
[30] Khazendar S, Al-assam H, Du H, et al. Automated classification of static ultrasound images of ovarian tumors based on decision level fusion[C]. proceedings of the 2014 6th Computer Science and Electronic Engineering Conference (CEEC), 2014:25-26.
[31] Khan A, Sohail A, Zahoora U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial intelligence review, 2020, 53(8):5455-5516.
[32] Cai L, Gao J, Zhao D. A review of the application of deep learning in medical image classification and segmentation[J]. Ann Transl Med, 2020, 8(11):713.
[33] Zhang L, Huang J, Liu L. Improved Deep Learning Network Based in combination with Cost-sensitive Learning for Early Detection of Ovarian Cancer in Color Ultrasound Detecting System[J]. J Med Syst, 2019, 43(8):251.
[34] Christiansen F, Epstein EL, Smedberg E, et al. Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: comparison with expert subjective assessment[J]. Ultrasound Obstet Gynecol, 2021, 57(1):155-163.
[35] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]. in International Conference on Learning Representations, 2015.
[36] He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[37] Howard AG, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861,2017.
[38] Gao Y, Zeng S, Xu X, et al. Deep learning-enabled pelvic ultrasound images for accurate diagnosis of ovarian cancer in China: a retrospective, multicentre, diagnostic study[J]. Lancet Digit Health, 2022, 4(3):e179-e187.
[39] Chen H, Yang BW, Qian L, et al. Deep Learning Prediction of Ovarian Malignancy at US Compared with O-RADS and Expert Assessment[J]. Radiology, 2022, 304(1):106-113.
文章导航

/