论著

帕金森病早期诊断诺谟图模型的建立及验证

展开
  • 1.上海交通大学医学院附属瑞金医院 检验科,上海 200025
    2.山东省聊城市聊城退役军人医院神经内二科,山东 聊城 252000
    3.上海交通大学医学院附属瑞金医院 老年病科,上海 200025
    4.上海交通大学医学院附属瑞金医院 神经内科,上海 200025

收稿日期: 2023-05-05

  网络出版日期: 2023-11-17

Development of a Nomogram model for early diagnosis of Parkinson disease

Expand
  • 1. Department of Clinical Laboratory,Ruijin Hospital,Shanghai Jiao Tong University School of Medicine 200025
    2. Neurology Department Ⅱ, Liaocheng Veterans Hospital 252000
    3. Geriatrics Department, Ruijin Hospital,Shanghai Jiao Tong University School of Medicine 200025
    4. Neurology Department,Ruijin Hospital,Shanghai Jiao Tong University School of Medic 200025

Received date: 2023-05-05

  Online published: 2023-11-17

摘要

目的:构建帕金森病(Parkinson’s disease, PD)早期诊断诺谟图模型并验证。方法:本研究连续纳入2013年6月至2019年12月期间在上海交通大学附属瑞金医院住院的PD患者201例(PD组),以同期住院的201例神经系统慢性疾病患者非原发性帕金森病作为对照(非PD组)。在402例研究对象中,分层随机抽取300例(PD患者和非PD患者各150例)作为训练集,其余102例(PD患者51例,非PD患者51例)作为验证集。本研究采用具有完整数据处理、计算和制图能力的R软件(4.2.1版本)对训练集进行数据分析,采用单因素回归分析筛选PD的危险因素,并进一步进行多因素logistic回归分析及列线图模型构建。利用校准曲线受试者操作特征曲线分别对训练集和验证集进行内部及外部验证。结果:多因素logistic回归分析显示,高龄(>60岁)(OR=3.987,95%CI为2.126~7.477,P=0.131)、认知功能障碍蒙特利尔认知评估量表(Montreal Cognitive Assessment,MoCA)评分>26)(OR=3.094,95%CI为1.654~5.787,P<0.001)、便秘(OR=2.630,95%CI为1.430~4.835,P=0.002)、快速眼动睡眠行为障碍(rapid-eye-movement sleep behavior disorder, RBD)(OR=2.710,95%CI为1.449~5.068,P=0.002)、嗅觉减退(OR=2.117,95%CI为1.172~3.824,P=0.013)、铜兰蛋白(<20 mg/L)(ceruloplasmin,CER)水平降低(OR=3.356,95%CI为1.923~5.855,P<0.001)是PD的危险因素。基于上述危险因素建立诺谟图模型,内外部验证曲线下面积分别为0.729、0.714。结论:诺谟图诊断模型能有效辅助诊断PD,具有一定的临床应用价值。

本文引用格式

魏坚, 孙杰, 崔诗爽 . 帕金森病早期诊断诺谟图模型的建立及验证[J]. 诊断学理论与实践, 2023 , 22(03) : 277 -282 . DOI: 10.16150/j.1671-2870.2023.03.11

Abstract

Objective: To construct a Nomogram model for early diagnosis of Parkinson’s and validate it. Methods: This study consecutively enrolled 201 Parkinson’s patients who were hospitalized in Ruijin Hospital affiliated to Shanghai Jiaotong University between June 2013 and December 2019 as the Parkinson’s group; 201 Patients with chronic neurological diseases of non-primary Parkinson’s disease who were hospitalized during the same period served as the control group. Of the 402 cases, 300 cases (150 Parkinson’s patients and 150 non-Parkinson’s patients) were stratified and randomly selected as the training set. The remaining 102 cases (51 Parkinson’s patients and 51 non-Parkinson’s patients) were used as the validation set. In this study, R software (version 4.2.1) with complete data processing, computation, and graphing capabilities was used to analyze the data in the training set. Univariate logistic regression analysis was used to screen the risk factors for Parkinson’s disease, and multivariate logistic regression analysis and nomogram model construction were further performed. Calibration and ROC curves were used to perform internal and external validation on the training and validation sets respectively. Results: Multivariate Logistic regression analysis showed advanced age(>60) (OR=3.987 95%CI=2.126-7.477 P=0.131), cognitive dysfunction(MoCA score >26) (OR=3.094 95%CI=1.654-5.787 P<0.001), constipation (OR=2.630 95%CI=1.430-4.835 P=0.002), RBD (OR=2.710 95%CI=1.449-5.068 P=0.002), hyposmia (OR=2.117 95%CI=1.172-3.824 P=0.013), and reduced CER(<20 mg/L) (OR=3.356 95%CI=1.923-5.855 P<0.001) were risk factors for Parkinson’s. The Nomogram model was established based on the above risk factors, and the areas under the internal and external validation curves were 0.729 and 0.714, respectively. Conclusions: The Nomogram diagnostic model can effectively assist in diagnosing Parkinson’s disease and has certain clinical application value.

参考文献

[1] BLOEM B R, OKUN M S, KLEIN C. Parkinson's disease[J]. Lancet, 2021, 397(10291):2284-2303.
[2] ARMSTRONG M J, OKUN M S. Diagnosis and treatment of Parkinson disease: a review[J]. JAMA, 2020, 323(6):548-560.
[3] HAYES M T. Parkinson's Disease and Parkinsonism[J]. Am J Med, 2019, 132(7):802-807.
[4] CEBALLOS-BAUMANN A. Parkinson-Syndrom [Parkinson's Disease - What is New?][J]. Dtsch Med Wochenschr 2022, 147(6):337-343.
[5] DORSEY E R, SHERER T, OKUN M S, et al. The emerging evidence of the Parkinson pandemic[J]. J Parkinsons Dis, 2018, 8(s1):S3-S8.
[6] TONG C, MIAO Q, ZHENG J, et al. A novel nomogram for predicting the decision to delayed extubation after thoracoscopic lung cancer surgery[J]. Ann Med, 2023, 55(1):800-807.
[7] ABDULHALEEM M, RUIZ J, CRAMER C, et al. Brain metastasis prognostic nomograms and brain metastasis velocity: a narrative review[J]. Chin Clin Oncol, 2022, 11(2):10.
[8] ZHANG L, TANG L, CHEN S, et al. A nomogram for predicting the 4-year risk of chronic kidney disease among Chinese elderly adults[J]. Int Urol Nephrol, 2023, 55(6):1609-1617.
[9] 石红, 杨彦辉, 张亚萍, 等. Nomogram预测乳腺浸润性导管癌Ki-67表达水平[J]. 中国超声医学杂志, 2023, 39(1):17-21.
[9] SHI H, YANG Y H, ZHANG Y P, et al. Nomogram to Predict Ki-67 Expression levels in invasive ductal breast cancer[J]. Chin J Ultrasound Med, 2023, 39(1):17-21.
[10] YE H, ROBAK L A, YU M, et al. Genetics and Pathoge-nesis of Parkinson's Syndrome[J]. Annu Rev Pathol, 2023, 18:95-121.
[11] 王刚, 崔海伦. 帕金森病临床诊断和治疗现状及进展[J]. 重庆医科大学学报, 2019, 44(4):464-467.
[11] WANG G, CUI H L. Clinical diagnosis and treatment of Parkinson's disease in China:Current status and research advances[J]. J Chongqing Med Univ, 2019, 44(4):464-467.
[12] 孙雪婷, 张志伟, 余刚. 磁敏感加权成像黑质“燕尾征”在帕金森病中的诊断价值[J]. 重庆医科大学学报, 2021, 46(7):823-827.
[12] SUN X T, ZHANG Z W, YU G. Diagnostic value of “swallow tail” appearance in the substantia nigra using susceptibility weighted imaging in Parkinson's disease[J]. J Chongqing Med Univ, 2021, 46(7):823-827.
[13] AMBROSIO L, PORTILLO M C, RODRIGUEZ-BLAZQUEZ C, et al. Influencing factors when living with Parkinson's disease: a cross-sectional study[J]. J Clin Nurs, 2019, 28(17-18):3168-3176.
[14] SIMON D K, TANNER C M, BRUNDIN P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology[J]. Clin Geriatr Med, 2020, 36(1):1-12.
[15] PAN L, LI C, MENG L, et al. Tau accelerates α-synuclein aggregation and spreading in Parkinson's disease[J]. Brain, 2022, 145(10):3454-3471.
[16] LEWITT P A, CHAUDHURI K R. Unmet needs in Parkinson disease: motor and non-motor[J]. Parkinsonism Relat Disord, 2020, 80 Suppl 1:S7-S12.
[17] BANG Y, LIM J, CHOI H J. Recent advances in the pathology of prodromal non-motor symptoms olfactory deficit and depression in Parkinson's disease: clues to early diagnosis and effective treatment[J]. Arch Pharm Res, 2021, 44(6):588-604.
[18] DU Y, LI Y, XU X, et al. Probiotics for constipation and gut microbiota in Parkinson's disease[J]. Parkinsonism Relat Disord, 2022, 103:92-97.
[19] CHEN Z, LI G, LIU J. Autonomic dysfunction in Parkinson's disease: Implications for pathophysiology, diagnosis, and treatment[J]. Neurobiol Dis, 2020, 134:104700.
[20] 阿地拉·艾尼瓦尔, 张拉, 蒋森, 等. α-突触核蛋白基因多态性与帕金森病的关联分析[J]. 重庆医科大学学报, 2021, 46(7):844-848.
[20] ADILA·A, ZHANG L, JIANG S, et al. Correlation between polymorphism of α-synuclein gene and Parkinson's disease[J]. J Chongqing Med Univ, 2021, 46(7):844-848.
[21] DAUVILLIERS Y, SCHENCK C H, POSTUMA R B, et al. REM sleep behaviour disorder[J]. Nat Rev Dis Primers, 2018, 4(1):19.
[22] HU M T. REM sleep behavior disorder (RBD)[J]. Neurobiol Dis, 2020, 143:104996.
[23] LIN Y Q, CHEN S D. RBD: a red flag for cognitive impairment in Parkinson's disease?[J]. Sleep Med, 2018, 44:38-44.
[24] ZHAO X, SHAO Z, ZHANG Y, et al. Ceruloplasmin in Parkinson's disease and the nonmotor symptoms[J]. Brain Behav, 2018, 8(6):e00995.
[25] WANG B, WANG X P. Does ceruloplasmin defend against neurodegenerative diseases?[J]. Curr Neuropharmacol, 2019, 17(6):539-549.
[26] GARDNER B, DIERIKS B V, CAMERON S, et al. Metal concentrations and distributions in the human olfactory bulb in Parkinson's disease[J]. Sci Rep, 2017, 7(1):10454.
[27] ZUZUáRREGUI J R P, DURING E H. Sleep issues in Parkinson's disease and their management[J]. Neurotherapeutics, 2020, 17(4):1480-1494.
[28] HELLMAN N E, GITLIN J D. Ceruloplasmin metabolism and function[J]. Annu Rev Nutr, 2002, 22:439-458.
[29] 张忠伟, 李杨飞, 潘璟琍, 等. 扩散峰度成像参数在帕金森病诊断中的价值研究[J]. 中华全科医学, 2020, 18(2):273-276.
[29] ZHANG Z W, LI Y F, PAN J L, et al. The value research of diffusion kurtosis imaging parameters in diagnosing Parkinson's disease[J]. Chin J General Pract, 2020, 18(2):273-276.
文章导航

/