收稿日期: 2023-06-27
网络出版日期: 2023-12-18
基金资助
国家自然科学基金面上项目(82072876)
The application value of determination of hemostasis and thrombosis in tumor patients
Received date: 2023-06-27
Online published: 2023-12-18
出凝血功能异常是恶性肿瘤发生、发展的重要特征。肿瘤细胞释放促血管生成因子引起血管内皮损伤,并诱导血小板活化和增多,均增加了血栓形成的风险。肿瘤患者常表现为活化部分凝血活酶时间(activated partial thromboplastin time,APTT)和凝血酶原时间(prothrombin time,PT)缩短,纤维蛋白原、D-二聚体水平和血小板计数增高,呈现高凝状态。血栓形成的同时,纤溶系统激活,D-二聚体和纤维蛋白降解产物(fibrin degradation product, FDP)升高,两者是纤溶系统常用标志物,计算FDP/D-二聚体比值,可提高诊断血栓或出血的准确率。血小板功能及血小板表面标志物等新型出凝血标志物,可用于评估血小板活化状况。在肿瘤高凝状态和纤溶过程中,血栓新4项[凝血酶-抗凝血酶复合物(thrombin-antithrombin, TAT)、纤溶酶α2纤溶酶抑制物复合物(plasmin-α2-plasmin inhibitor complex, PIC)、组织纤溶酶原激活物-抑制剂1复合物(tissue plasminogen activator-inhibitor 1 complex, t-PAIC)和血栓调节蛋白]可作为恶性肿瘤和血栓形成的诊断标志物。血栓弹力图可同时反映凝血因子活性、纤维蛋白原活性、血小板数量和功能,展示了凝血与纤溶的整体动态过程。传统凝血6项与血小板计数联检、血栓新4项联合D-二聚体、FDP检测,以及多种血栓风险评估模型,在不同肿瘤的预后评估中发挥着重要作用。随着人工智能和新标志物的发展,出凝血异常检测的应用前景将更为广阔。
王砚春, 卢仁泉 . 出凝血检测在肿瘤患者中的应用价值探讨[J]. 诊断学理论与实践, 2023 , 22(04) : 341 -347 . DOI: 10.16150/j.1671-2870.2023.04.003
Abnormal coagulation function is an important feature of the occurrence and development of malignant tumors. Tumor cells release pro-angiogenic factors that cause vascular endothelial damage and induce platelet activation and proliferation, all of which increase the risk of thrombosis. Cancer patients often present with shortened APTT and PT, elevated fibrinogen, D-dimer and platelet counts, and a hypercoagulable state. With thrombosis forms, the fibrinolytic system is activated, and D-dimer and fibrin degradation product (FDP) increase. Both are commonly used markers of the fibrinolytic system. FDP/D-dimer ratio may improve the accuracy of diagnosing thrombosis or bleeding. New coagulation markers, such as platelet function and platelet surface markers, can be used to assess platelet activation. During the hypercoagulable state and the fibrinolysis process of tumors, four new thrombosis factors are discovered: thrombin-antithrombin (TAT), plasmin α2-plasmin inhibitor complex (PIC), tissue plasminogen activator-inhibitor 1 complex (t-PAIC) and thrombomodulin, which can be used as diagnostic markers for malignant tumors and thrombosis. Thromboelastography simultaneously reflects coagulation factor activity, fibrinogen activity, platelet counts and function, and demonstrates the overall dynamic process of coagulation and fibrinolysis. The 6 traditional coagulation tests combined with platelet count, the 4 new thrombosis tests combined with D-dimer and FDP tests, as well as various thrombosis risk assessment models, play an important role in the prognosis assessment of different tumors. With the development of artificial intelligence and new indicators, the application prospects of coagulation abnormality detection will be broader.
[1] | MAHAJAN A, BRUNSON A, WHITE R, et al. The epidemiology of cancer-associated venous thromboembolism: an update[J]. Semin Thromb Hemost, 2019, 45(4):321-325. |
[2] | ADMASU F T, DEJENIE T A, AYEHU G W, et al. Evaluation of thromboembolic event, basic coagulation parameters, and associated factors in patients with colorectal cancer: a multicenter study[J]. Front Oncol, 2023, 13:1143122. |
[3] | FALANGA A, RUSSO L, MILESI V, et al. Mechanisms and risk factors of thrombosis in cancer[J]. Crit Rev Oncol Hematol, 2017, 118:79-83. |
[4] | FALANGA A, MARCHETTI M, VIGNOLI A. Coagulation and cancer: biological and clinical aspects[J]. J Thromb Haemost, 2013, 11(2):223-233. |
[5] | MAHAJAN A, WUN T. Biomarkers of cancer-associated thromboembolism[J]. Cancer Treat Res, 2019, 179:69-85. |
[6] | 郝庆刚, 孙凤桂, 严程浩, 等. MT1-MMP在肿瘤转移中的研究进展[J]. 遗传, 2022, 44(9): 745-755. |
[6] | HAO Q G, SUN F G, YAN C H, et al. Progress on the role and mechanism of MT1-MMP in tumor metastasis[J]. Yi Chuan, 2022, 44(9):745-755. |
[7] | 陈罗军, 田景媛, 李娜, 等. 血小板在促进肿瘤进展中的作用[J]. 国际肿瘤学杂志, 2018, 45(2):103-106. |
[7] | CHEN L J, TIAN J Y, LI N, et al. Roles of platelets in tumor progression[J]. J Int Oncol, 2018, 45(2):103-106 |
[8] | HUFNAGEL D H, COZZI G D, CRISPENS M A, et al. Platelets, thrombocytosis, and ovarian cancer prognosis: surveying the landscape of the literature[J]. Int J Mol Sci, 2020, 21(21):8169. |
[9] | KVOLIK S, JUKIC M, MATIJEVIC M, et al. An overview of coagulation disorders in cancer patients[J]. Surg Oncol, 2010, 19(1):e33-46. |
[10] | DAVIS E J, SALEM J E, YOUNG A, et al. Hematologic complications of immune checkpoint inhibitors[J]. Oncologist, 2019, 24(5):584-588. |
[11] | MEI H, CHEN F, HAN Y, et al. Chinese expert consensus on the management of chimeric antigen receptor T cell therapy-associated coagulopathy[J]. Chin Med J (Engl), 2022, 135(14):1639-1641. |
[12] | ELYAMANY G, ALZAHRANI A M, BUKHARY E. Cancer-associated thrombosis: an overview[J]. Clin Med Insights Oncol, 2014, 8:129-137. |
[13] | KHORANA A A, MACKMAN N, FALANGA A, et al. Cancer-associated venous thromboembolism[J]. Nat Rev Dis Primers, 2022, 8(1):11. |
[14] | 马昀菲. 全麻复合腰方肌阻滞对腹腔镜胃癌根治术患者围术期凝血功能的影响[D]. 山东: 山东大学, 2022. |
[14] | MA Y F. The effect of general anesthesia combined with lumbar quadratus muscle block on perioperative coagulation function in patients undergoing laparoscopic radical gastrectomy for gastric cancer[D]. Shandong: Shandong University, 2022. |
[15] | Bayleyegn B, Adane T, Getawa S, et al. Coagulation parameters in lung cancer patients: a systematic review and meta-analysis[J]. J Clin Lab Anal, 2022, 36(7):e24550. |
[16] | NASSER N J, FOX J, AGBARYA A. Potential mechanisms of cancer-related hypercoagulability[J]. Cancers (Basel), 2020, 12(3):566. |
[17] | CAUCHIE P, CAUCHIE C, BOUDJELTIA K Z, et al. Diagnosis and prognosis of overt disseminated intravascular coagulation in a general hospital -- meaning of the ISTH score system, fibrin monomers, and lipoprotein-C-reactive protein complex formation[J]. Am J Hematol, 2006, 81(6):414-419. |
[18] | MAHMOOD N, RABBANI S A. Fibrinolytic system and cancer: diagnostic and therapeutic applications[J]. Int J Mol Sci, 2021, 22(9):4358. |
[19] | Ay C, Dunkler D, Pirker R, et al. High D-dimer levels are associated with poor prognosis in cancer patients[J]. Haematologica, 2012, 97(8):1158-1164. |
[20] | LYMAN G H, KHORANA A A, FALANGA A, et al. American Society of Clinical Oncology guideline: recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer[J]. J Clin Oncol, 2007, 25(34):5490-5505. |
[21] | MANDERSTEDT E, LIND-HALLDéN C, HALLDéN C, et al. Genetic variation of the blood coagulation regulator tissue factor pathway inhibitor and venous thromboembolism among middle-aged and older adults: a population-based cohort study[J]. Res Pract Thromb Haemost, 2022, 6(7):e12842. |
[22] | CHEN Y, WANG Y, XIE S, et al. A risk of venous thromboembolism algorithm as a predictor of venous thromboembolism in patients with colorectal cancer[J]. Clin Appl Thromb Hemost, 2021, 27:10760296211064900. |
[23] | 谭树芬, 杨琳琳, 何利平, 等. 紫杉醇联合卡铂化疗对卵巢癌凝血/纤溶及CA125/HE4水平的调控及临床意义[J]. 中国病理生理杂志, 2023, 39(3):503-509. |
[23] | TAN S F, YANG L L, YANG L P, et al. Regulation and clinical significance of paclitaxel with carboplatin com-bined chemotherapy on coagulation/fibrinolysis and CA125/HE4 levels in ovarian cancer[J]. Chin J Pathophysiol, 2023, 39(3):503-509. |
[24] | BLONSKI W, SIROPAIDES T, REDDY K R. Coagulopathy in liver disease[J]. Curr Treat Options Gastroenterol, 2007, 10(6):464-473. |
[25] | FANG P, DU L, CAI D. Evaluation of plasma D-dimer for the diagnosis in Chinese patients with hepatocellular carcinoma: a meta-analysis[J]. Medicine (Baltimore), 2020, 99(12):e19461. |
[26] | FENG H, LI B, LI Z, et al. PIVKA-Ⅱ serves as a potential biomarker that complements AFP for the diagnosis of hepatocellular carcinoma[J]. BMC cancer, 2021, 21(1):401. |
[27] | HERMSEN J, HAMBLEY B. The coagulopathy of acute promyelocytic leukemia: an updated review of pathophysiology, risk stratification, and clinical management[J]. Cancers (Basel), 2023, 15(13):3477. |
[28] | KANAJI N, MIZOGUCHI H, INOUE T, et al. Clinical features of patients with lung cancer accompanied by thromboembolism or disseminated intravascular coagulation[J]. Ther Clin Risk Manag, 2018, 14:1361-1368. |
[29] | HAO Z, LV H, TAN R, et al. A three-dimensional microfluidic device for monitoring cancer and chemotherapy-associated platelet activation[J]. ACS Omega, 2021, 6(4):3164-3172. |
[30] | ZHOU K, ZHANG J, ZHENG Z R, et al. Diagnostic and prognostic value of TAT, PIC, TM, and t-PAIC in malignant tumor patients with venous thrombosis[J]. Clin Appl Thromb Hemost, 2020, 26:1076029620971041. |
[31] | KHORANA A A, MACKMAN N, FALANGA A, et al. Cancer-associated venous thromboembolism[J]. Nat Rev Dis Primers, 2022, 8(1):11. |
[32] | BUCEK R A, REITER M, QUEHENBERGER P, et al. Thrombus precursor protein, endogenous thrombin potential, von-Willebrand factor and activated factor Ⅶ in suspected deep vein thrombosis: is there a place for new parameters?[J]. Br J Haematol, 2003, 120(1):123-128. |
[33] | ZHOU Y, GUO Y, CUI Q, et al. Application of thromboelastography to predict lung cancer stage[J]. Technol Cancer Res Treat, 2020, 19:1533033820952351. |
[34] | KHORANA A A, KUDERER N M, MCCRAE K, et al. Cancer associated thrombosis and mortality in patients with cancer stratified by khorana score risk levels[J]. Cancer Med, 2020, 9(21):8062-8073. |
[35] | MEHTA Y, BHAVE A. A review of venous thromboembolism risk assessment models for different patient populations: What we know and don't![J]. Medicine (Baltimore), 2023, 102(2):e32398. |
[36] | CHEN Y, WANG Y, XIE S, et al. A risk of venous thromboembolism algorithm as a predictor of venous thromboembolism in patients with colorectal cancer[J]. Clin Appl Thromb Hemost, 2021, 27:10760296211064900. |
[37] | MEI H, JIANG Y, LUO L, et al. Evaluation the combined diagnostic value of TAT, PIC, tPAIC, and sTM in disseminated intravascular coagulation: A multi-center prospective observational study[J]. Thromb Res, 2019, 173:20-26. |
[38] | 周坤, 周玉珍, 郑遵荣, 等. 血栓四项在恶性肿瘤患者静脉血栓形成中的应用研究[J]. 中国医师进修杂志, 2019, 42(11):994-999. |
[38] | ZHOU K, ZHOU Y Z, ZHENG Z R, et al. Application of four items of thrombosis detection in venous thrombosis of malignant tumor patients[J]. Chin J Postgrad Med, 2019, 42(11):994-999 |
[39] | GáLVEZ J A, PAPPAS J M, AHUMADA L, et al. The use of natural language processing on pediatric diagnostic radiology reports in the electronic health record to identify deep venous thrombosis in children[J]. J Thromb Thrombolysis, 2017, 44(3):281-290. |
[40] | FEI Y, HU J, GAO K, et al. Predicting risk for portal vein thrombosis in acute pancreatitis patients: A comparison of radical basis function artificial neural network and logistic regression models[J]. J Crit Care, 2017, 39:115-123. |
[41] | ROCHEFORT C M, VERMA A D, EGUALE T, et al. A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data[J]. J Am Med Inform Assoc, 2015, 22(1):155-165. |
[42] | LIU K, CHEN J, ZHANG K, et al. A diagnostic prediction model of acute symptomatic portal vein thrombosis[J]. Ann Vasc Surg, 2019, 61:394-399. |
[43] | WANG Q, YUAN L, DING X, et al. Prediction and diagnosis of venous thromboembolism using artificial intelligence approaches: a systematic review and meta-analysis[J]. Clin Appl Thromb Hemost, 2021, 27:10760296211021162. |
/
〈 |
|
〉 |