专家论坛

系统性红斑狼疮CAR T细胞治疗疗效预测及安全性评估的潜在生物标志物

  • 王一阳 ,
  • 吕良敬
展开
  • 上海交通大学医学院附属仁济医院风湿科,上海 200001
吕良敬 E-mail:lu_liangjing@163.com

收稿日期: 2024-04-23

  录用日期: 2024-05-23

  网络出版日期: 2024-06-25

基金资助

国家重点研究发展计划(2022YFC2504601);国家自然科学基金面上项目(81974251);上海交通大学“交大之星”计划医工交叉研究基金重点项目-精准医学研究(YG2023ZD09)

Potential biomarkers for prediction of the efficacy and safety of CAR T cell treatment in systemic lupus erythematosus

  • WANG Yiyang ,
  • Lü Liangjing
Expand
  • Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China

Received date: 2024-04-23

  Accepted date: 2024-05-23

  Online published: 2024-06-25

摘要

系统性红斑狼疮(systemic lupus erythematosus, SLE)是一种复杂的自身免疫疾病,传统治疗在部分重度和难治性患者中效果有限。近期研究显示,嵌合抗原受体(chimeric antigen receptor, CAR)T细胞疗法在SLE治疗中展现出了具有前景的疗效。生物标志物在精准评估治疗效果和安全性方面至关重要,CAR T细胞治疗与安全性评估标志物包括传统标志物和与CAR T细胞疗法相关的标志物。传统的SLE病情监测标志物,仍可用于CAR T细胞治疗基线随访和病情监测,如血清抗双链DNA、抗单链DNA和抗核小体等自身抗体的滴度下降,血清补体水平恢复正常,以及尿蛋白/肌酐比值的改善,均提示病情得到有效控制。CAR T细胞疗效监测标志物分为B细胞和T细胞标志物。输注后,B细胞数量下降,B细胞表型以初始B细胞为主,记忆B细胞和浆母细胞的比例显著降低,表明治疗取得了疗效。输注前,初始T细胞(CD45RA+CD27+)和中央记忆型T细胞(CD45RA-CD62L+CD27+)的高比例则提示更强的抗肿瘤效应;患者的CAR T细胞表达与早期记忆分化相关的转录因子,如T细胞因子7和淋巴增强子结合因子1,提示这些患者对CAR T细胞疗法更为敏感。输注后,CD25、CD69和CD137等T细胞激活标志物,以及CD57、PD-1和Tim-3等耗竭标志物的高表达,提示T细胞的杀伤能力受到限制。CAR T细胞治疗安全性标志物不仅包括CAR T细胞分泌的效应细胞因子(如白细胞介素-2和IFN-γ),还包括单核细胞和巨噬细胞产生的细胞因子(如IL-1和IL-8),其水平可用于评估CAR T细胞疗法最常见的毒副反应[细胞因子释放综合征(cytokine release syndrome, CRS)和免疫效应细胞相关神经毒性综合征(immune effector cell-associated neurotoxicity syndrome, ICANS)]。高水平的血清巨噬细胞炎性蛋白1α对于预测CAR T细胞治疗后发生严重CRS和ICANS的风险具有较高的价值。此外,基线血小板计数和中性粒细胞绝对值可预测血液毒性,由IL-8、IFN-γ和IL-1β组成的感染相关预测模型,能够有效预测患者输注后出现严重感染的风险。CAR受体结构设计、清除淋巴细胞的化疗方式,患者曾接受的治疗选择及自身免疫状态等都会影响CAR T细胞治疗的疗效及安全性。在当前及未来将开启的相关临床研究中,应纳入全面、规范的检测和评估体系,为CAR T细胞疗法在SLE等自身免疫疾病的应用,提供比较标准。

本文引用格式

王一阳 , 吕良敬 . 系统性红斑狼疮CAR T细胞治疗疗效预测及安全性评估的潜在生物标志物[J]. 诊断学理论与实践, 2024 , 23(03) : 263 -269 . DOI: 10.16150/j.1671-2870.2024.03.003

Abstract

Systemic lupus erythematosus (SLE) is a complex autoimmune disease for which traditional treatments often show limited efficacy in severe and refractory cases. Recently, chimeric antigen receptor (CAR) T cell therapy has emerged as a novel immunotherapy strategy, demonstrating significant efficacy in preliminary studies for SLE treatment. Biomarkers are crucial for the precise assessment of treatment efficacy and safety. Biomarkers for monitoring the efficacy of CAR T cell therapy include traditional markers and markers related to CAR T therapy. Traditional markers for SLE disease monitoring, such as decreased titers of serum anti-double-stranded DNA, anti-single-stranded DNA, anti-nucleosome autoantibodies, normalization of serum complement levels, and improvement of urine protein/creatinine ratio, indicate that the disease is effectively controlled and can still be used for baseline follow-up and disease monitoring during CAR T cell therapy. B cell markers indicating effective CAR T therapy include a decrease in the number of B cells after infusion, a B cell phenotype dominated by the naive B cell, and a significant decrease in the proportion of memory B cells and plasmablasts. Regarding T cell markers related to CAR T therapy, the high proportion of naive T cell (CD45RA+CD27+) and central memory T cell (CD45RA-CD62L+CD27+) subsets before infusion indicate stronger anti-tumor efficacy; The initial expression of transcription factors associated with early memory differentiation on patients’ CAR T cells, such as T cell factor 7 (TCF7) and lymphoid enhancer‐binding factor 1 (LEF1), suggest that these patients may be sensitive to CAR T therapy. After infusion, high expression of T cell activation markers (CD25, CD69 and CD137), and exhaustion markers (CD57, PD-1, and Tim-3) indicate that T cells are in a state of dysfunction, with limited expansion, cytokine secretion and cell killing capabilities. Safety markers, including effector cytokines secreted by CAR T cells [interleukin(IL)-2 and IFN-γ] and cytokines produced by monocytes and macrophages (IL-1 and IL-8), can be used to monitor the most common toxicities and side-effects of CAR T-cell therapies, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS).High levels of serum macrophage inflammatory protein-1α (MIP-1α) are of high value for predicting the risk of severe CRS and ICANS after CAR T-cell therapy. In addition, haematotoxicity markers include baseline platelet count and absolute neutrophil count, and an infection-related prediction model consisting of IL-8, IFN-γ and IL-1β are effective in predicting the risk of severe infection in patients after infusion.The design of the CAR receptor structure, the chemotherapeutic modality used to remove the lymphocytes, as well as the choice of treatments that the patient had received and the autoimmune status, all affect the efficacy and safety. A comprehensive and standardised testing and evaluation system should be included in current and future clinical studies to provide a comparative standard for the use of CAR T-cell therapy in autoimmune diseases such as SLE.

参考文献

[1] BAKER D J, ARANY Z, BAUR J A, et al. CAR T therapy beyond cancer: the evolution of a living drug[J]. Nature, 2023, 619(7971):707-715.
[2] MALDINI C R, ELLIS G I, RILEY J L. CAR T cells for infection, autoimmunity and allotransplantation[J]. Nat Rev Immunol, 2018, 18(10):605-616.
[3] DRIVER C B, ISHIMORI M, WEISMAN M H. The B cell in systemic lupus erythaematosus: a rational target for more effective therapy[J]. Ann Rheum Dis, 2008, 67(10):1374-1381.
[4] MOUGIAKAKOS D, KR?NKE G, V?LKL S, et al. CD19-Targeted CAR T Cells in Refractory Systemic Lupus Erythematosus[J]. N Engl J Med, 2021, 385(6):567-569.
[5] MACKENSEN A, MüLLER F, MOUGIAKAKOS D, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus[J]. Nat Med, 2022, 28(10):2124-2132.
[6] MüLLER F, TAUBMANN J, BUCCI L, et al. CD19 CAR T-Cell Therapy in Autoimmune Disease - A Case Series with Follow-up[J]. N Engl J Med, 2024, 390(8):687-700.
[7] WANG Z, HAN W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy[J]. Biomark Res, 2018, 6:4.
[8] TAN J Y, LOW M H, CHEN Y, et al. CAR T Cell Therapy in Hematological Malignancies: Implications of the Tumor Microenvironment and Biomarkers on Efficacy and Toxicity[J]. Int J Mol Sci, 2022, 23(13):6931.
[9] LEVSTEK L, JAN?I? L, IHAN A, et al. Biomarkers for prediction of CAR T therapy outcomes: current and future perspectives[J]. Front Immunol, 2024, 15:1378944.
[10] LARSON R C, MAUS M V. Recent advances and discoveries in the mechanisms and functions of CAR T cells[J]. Nat Rev Cancer, 2021, 21(3):145-161.
[11] LABANIEH L, MACKALL C L. CAR immune cells: design principles, resistance and the next generation[J]. Nature, 2023, 614(7949):635-648.
[12] XIAO X, HUANG S, CHEN S, et al. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies[J]. J Exp Clin Cancer Res, 2021, 40(1):367.
[13] FLUGEL C L, MAJZNER R G, KRENCIUTE G, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours[J]. Nat Rev Clin Oncol, 2023, 20(1):49-62.
[14] SCHUBERT M L, SCHMITT M, WANG L, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy[J]. Ann Oncol, 2021, 32(1):34-48.
[15] ARBITMAN L, FURIE R, VASHISTHA H. B cell-targeted therapies in systemic lupus erythematosus[J]. J Autoimmun, 2022, 132:102873.
[16] KANSAL R, RICHARDSON N, NEELI I, et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus[J]. Sci Transl Med, 2019, 11(482):eaav1648.
[17] JIN X, XU Q, PU C, et al. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus[J]. Cell Mol Immunol, 2021, 18(8):1896-1903.
[18] WANG W, HE S, ZHANG W, et al. BCMA-CD19 compound CAR T cells for systemic lupus erythematosus: a phase 1 open-label clinical trial[J/OL]. Ann Rheum Dis.[2024-04-23]. https://pubmed.ncbi.nlm.nih.gov/38777376/.
[19] LINDBLOM J, MOHAN C, PARODIS I. Diagnostic, predictive and prognostic biomarkers in systemic lupus erythematosus: current insights[J]. Curr Opin Rheumatol, 2022, 34(2):139-149.
[20] TAUBMANN J, MüLLER F, YALCIN MUTLU M, et al. CD19 Chimeric Antigen Receptor T Cell Treatment: Unraveling the Role of B Cells in Systemic Lupus Erythematosus[J]. Arthritis Rheumatol, 2024, 76(4):497-504.
[21] JACOBI A M, REITER K, MACKAY M, et al. Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95[J]. Arthritis Rheum, 2008, 58(6):1762-1773.
[22] TIPTON C M, FUCILE C F, DARCE J, et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus[J]. Nat Immunol, 2015, 16(7):755-765.
[23] FRAIETTA J A, LACEY S F, ORLANDO E J, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia[J]. Nat Med. 2018; 24(5):563-571.
[24] TURICEK D P, GIORDANI V M, MORALY J, et al. CAR T-cell detection scoping review: an essential biomarker in critical need of standardization[J]. J Immunother Cancer, 2023, 11(5):e006596.
[25] KASAKOVSKI D, XU L, LI Y. T cell senescence and CAR-T cell exhaustion in hematological malignancies[J]. J Hematol Oncol, 2018, 11(1):91.
[26] ARCANGELI S, FALCONE L, CAMISA B, et al. Next-Generation Manufacturing Protocols Enriching TSCM CAR T Cells Can Overcome Disease-Specific T Cell Defects in Cancer Patients[J]. Front Immunol, 2020, 11:1217.
[27] SIMULA L, OLLIVIER E, ICARD P, et al. Immune Checkpoint Proteins, Metabolism and Adhesion Molecules: Overlooked Determinants of CAR T-Cell Migration?[J]. Cells, 2022, 11(11):1854.
[28] ANSELL S M, MAURER M J, ZIESMER S C, et al. Elevated pretreatment serum levels of interferon-inducible protein-10 (CXCL10) predict disease relapse and prognosis in diffuse large B-cell lymphoma patients[J]. Am J Hematol, 2012, 87(9):865-869.
[29] TIAN Y, WEN C, ZHANG Z, et al. CXCL9-modified CAR T cells improve immune cell infiltration and antitumor efficacy[J]. Cancer Immunol Immunother. 2022; 71(11):2663-2675.
[30] WANG G, ZHANG Z, ZHONG K, et al. CXCL11-armed oncolytic adenoviruses enhance CAR-T cell therapeutic efficacy and reprogram tumor microenvironment in glioblastoma[J]. Mol Ther, 2023, 31(1):134-153.
[31] LIU D, ZHAO J. Cytokine release syndrome: grading, modeling, and new therapy[J]. J Hematol Oncol, 2018, 11(1):121.
[32] HONG R, HU Y, HUANG H. Biomarkers for Chimeric Antigen Receptor T Cell Therapy in Acute Lymphoblastic Leukemia: Prospects for Personalized Management and Prognostic Prediction. Front Immunol. 2021; 12:627764.
[33] TEACHEY D T, LACEY S F, SHAW P A, et al. Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia[J]. Cancer Discov, 2016, 6(6):664-679.
[34] NORELLI M, CAMISA B, BARBIERA G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells[J]. Nat Med, 2018, 24(6):739-748.
[35] HAY K A, HANAFI L A, LI D, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy[J]. Blood, 2017, 130(21):2295-2306.
[36] SANTOMASSO B D, PARK J H, SALLOUM D, et al. Clinical and Biological Correlates of Neurotoxicity Associated with CAR T-cell Therapy in Patients with B-cell Acute Lymphoblastic Leukemia[J]. Cancer Discov, 2018, 8(8):958-971.
[37] MORENO-CASTA?O A B, FERNáNDEZ S, VENTOSA H, et al. Characterization of the endotheliopathy, innate-immune activation and hemostatic imbalance underlying CAR-T cell toxicities: laboratory tools for an early and differential diagnosis[J]. J Immunother Cancer, 2023, 11(4):e006365.
[38] FRIED S, AVIGDOR A, BIELORAI B, et al. Early and late hematologic toxicity following CD19 CAR-T cells[J]. Bone Marrow Transplant, 2019, 54(10):1643-1650.
[39] REJESKI K, PEREZ A, SESQUES P, et al. CAR-HEMATOTOX: a model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma[J]. Blood, 2021, 138(24):2499-2513.
[40] HILL J A, LI D, HAY K A, et al. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy[J]. Blood, 2018, 131(1):121-130.
[41] LOCKE F L, GHOBADI A, JACOBSON C A, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial[J]. Lancet Oncol, 2019, 20(1):31-42.
[42] LUO H, WANG N, HUANG L, et al. Inflammatory signatures for quick diagnosis of life-threatening infection during the CAR T-cell therapy[J]. J Immunother Cancer, 2019, 7(1):271.
[43] SANDLER R D, TATTERSALL R S, SCHOEMANS H, et al. Diagnosis and Management of Secondary HLH/MAS Following HSCT and CAR-T Cell Therapy in Adults; A Review of the Literature and a Survey of Practice Within EBMT Centres on Behalf of the Autoimmune Diseases Working Party (ADWP) and Transplant Complications Working Party (TCWP)[J]. Front Immunol, 2020, 11:524.
[44] NEELAPU S S, TUMMALA S, KEBRIAEI P, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities[J]. Nat Rev Clin Oncol, 2018, 15(1):47-62.
文章导航

/