收稿日期: 2023-08-22
录用日期: 2023-11-05
网络出版日期: 2024-08-25
基金资助
国家自然科学基金(81871706);上海市自然科学基金(22ZR1439800);上海市医学重点专科建设项目(ZK2012A21);上海市卫生健康委员会课题基金(202240205);上海市卫生健康委员会课题基金(201840227);上海市卫生健康委员会课题基金(201740069);上海市黄浦区卫生和计划生育委员会课题(HKM201702)
Knocking out FLO8 gene of Candida glabrata and its effect on EPA family
Received date: 2023-08-22
Accepted date: 2023-11-05
Online published: 2024-08-25
目的:构建光滑念珠菌FLO8基因敲除株,并分析FLO8敲除对光滑念珠菌上皮黏附素(epithelial adhesin, EPA)家族表达的影响。方法:使用融合PCR技术,以光滑念珠菌ATCC2001菌株基因组DNA、带有筛选标记诺尔斯菌素抗性基因(NAT)的质粒DNA为模板,构建敲除组件。采用醋酸锂转染法将敲除组件转染入ATCC2001中,从而获得flo8△菌株。使用实时荧光定量PCR检测菌株中EPA1、EPA6和EPA7基因的表达。结果:获得光滑念珠菌FLO8基因敲除株flo8△,该菌株的EPA1、EPA6和EPA7基因表达水平对明显低于ATCC2001株(P均<0.001)。结论:此法可便捷、有效地构建光滑念珠菌基因敲除菌株。敲除FLO8基因后,光滑念珠菌的EPA家族表达降低,为进一步研究光滑念珠菌毒力机制奠定基础。
赵珺涛 , 袁捷 , 刘锦燕 , 陈柯志 , 项明洁 . 运用融合PCR技术敲除光滑念珠菌FLO8基因以及其对EPA黏附素家族表达的影响[J]. 诊断学理论与实践, 2024 , 23(04) : 398 -404 . DOI: 10.16150/j.1671-2870.2024.04.008
Objective To construct a FLO8 gene knockout strain of Candida glabrata and analyze the effect of FLO8 knockout on the expression of EPA family in Candida glabrata. Methods By fusion PCR technology, the knockout components were constructed with the genomic DNA of Candida glabrata ATCC2001 strain and the plasmid DNA with screening marker NAT as templates. The knockout components were transfected into Candida glabrataATCC2001 by lithium acetate transfection method to obtainflo8△strain. The expression of EPA1, EPA6 and EPA7 genes were detected by real-time quantitative PCR. Results The FLO8 gene knockout strain of Candida glabrata was efficiently constructed. The expression levels of EPA1, EPA6 and EPA7genes in flo8△strain were significantly lower than those in ATCC2001 strain (all P<0.001). Conclusions The gene knockout method permits rapid, easy and highly efficient generation of homozygous knockout mutations in Candida glabrata. The knockout of FLO8 gene reduced the expression of EPA family in Candida glabrata, which laid a foundation for further study on its virulence mechanism.
Key words: Candida glabrata; Gene knockout; Adhesin; FLO8 gene; Epithelial adhesin family
[1] | DESAI C, MAVRIANOS J, CHAUHAN N. Candida glabrata Pwp7p and Aed1p are required for adherence to human endothelial cells[J]. FEMS Yeast Res, 2011, 11(7):595-601. |
[2] | VALOTTEAU C, PRYSTOPIUK V, CORMACK B P, et al. Atomic force microscopy demonstrates that Candida glabrata uses three Epa proteins to mediate adhesion to abiotic surfaces[J]. mSphere, 2019, 4(3):e00277-e00219. |
[3] | ALEXANDER B D, JOHNSON M D, PFEIFFER C D, et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations[J]. Clin Infect Dis, 2013, 56(12):1724-1732. |
[4] | GALOCHA M, PAIS P, CAVALHEIRO M, et al. Divergent approaches to virulence in C. albicans and C. glabrata: two sides of the same coin[J]. Int J Mol Sci, 2019, 20(9):2345. |
[5] | TIMMERMANS B, DE LAS PE?AS A, CASTA?O I, et al. Adhesins in Candida glabrata[J]. J Fungi (Basel), 2018, 4(2):60. |
[6] | KUCHARíKOVá S, TOURNU H, LAGROU K, et al. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin[J]. J Med Microbiol, 2011, 60(Pt 9):1261-1269. |
[7] | CASTA?O I, PAN S J, ZUPANCIC M, et al. Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata[J]. Mol Microbiol, 2005, 55(4):1246-1258. |
[8] | CAO F, LANE S, RANIGA P P, et al. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans[J]. Mol Biol Cell, 2006, 17(1):295-307. |
[9] | FOX E P, BUI C K, NETT J E, et al. An expanded regulatory network temporally controls Candida albicans biofilm formation[J]. Mol Microbiol, 2015, 96(6):1226-1239. |
[10] | 俞焙秦, 江岑, 董丹凤, 等. 光滑假丝酵母PDR1基因敲除菌株的建立[J]. 生物技术, 2013, 23(4):43-46. |
YU B Q, JIANG C, DONG D F, et al. Construction of a PDR1 Knock-out Strain of Candida glabrata[J]. Biotechnol, 2013, 23(4):43-46. | |
[11] | SCHWARZMüLLER T, MA B, HILLER E, et al. Systema-tic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes[J]. PLoS Pathog, 2014, 10(6):e1004211. |
[12] | 李文静, 刘锦燕, 史册, 等. 融合PCR结合同源重组技术敲除白色假丝酵母菌FLO8基因[J]. 上海交通大学学报(医学版), 2016, 36(3):334-339. |
LI W J, LIU J Y, SHI C, et al. Knock out FLO8 gene in Candida albicans by fusion PCR combined with homologous recombination[J]. J Shanghai Jiaotong Univ(Med Sci), 2016, 36(3):334-339. | |
[13] | 王钰婷, 刘锦燕, 史册, 等. 白念珠菌ERG3基因敲除及其对耐药性的影响[J]. 上海交通大学学报(医学版), 2020, 40(2):163-170. |
WANH Y T, LIU J Y, SHI C, et al. Knocking out ERG3 gene of Candida albicans and its effect on drug resistance[J]. J Shanghai Jiaotong Univ(Med Sci), 2020, 40(2):163-170. | |
[14] | 李文静, 刘明, 刘锦燕, 等. 白念珠菌FLO8基因突变株构建及鉴定[J]. 中国真菌学杂志, 2016, 11(1):1-7. |
LI W J, LIU M, LIU J Y, et al. Construction and identification of Candida albicans FLO8 mutations[J]. Chin J Mycol, 2016, 11(1):1-7. | |
[15] | UENO K, UNO J, NAKAYAMA H, et al. Development of a highly efficient gene targeting system induced by transient repression of YKU80 expression in Candida glabrata[J]. Eukaryot Cell, 2007, 6(7):1239-1247. |
[16] | STAAB J F, SUNDSTROM P. URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes[J]. Trends Microbiol, 2003, 11(2):69-73. |
[17] | BRAND A, MACCALLUM D M, BROWN A J, et al. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus[J]. Eukaryot Cell, 2004, 3(4):900-909. |
[18] | LAY J, HENRY L K, CLIFFORD J, et al. Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies[J]. Infect Immun, 1998, 66(11):5301-5306. |
[19] | 李振, 钱增堃, 刘福荣, 等. MALDI-TOF MS技术在真菌鉴定中的应用[J]. 安徽医学, 2022, 43(4):479-481. |
LI Zhen, QIAN Zengkun, LIU Furon, et al. The Application of MALDI-TOF MS Technology in the Identification of Fungi[J]. J Anhui Med, 2022, 43(4):479-481. | |
[20] | 胡谢飞, 邬文燕, 智深深, 等. 一种用于脓毒症快速检测的多重PCR检测体系构建[J]. 重庆医科大学学报, 2022, 47(8):982-988. |
HU X F, WU W Y, ZHI S S, et al. Establishment of a multiplex PCR system for rapid detection of sepsis[J]. J Chongqing Med Univ, 2022, 47(8):982-988. | |
[21] | VITENSHTEIN A, CHARPAK-AMIKAM Y, YAMIN R, et al. NK cell recognition of Candida glabrata through binding of NKp46 and NCR1 to fungal ligands Epal, Epa6, and Epa7[J]. Cell Host Microbe, 2016, 20(4):527-534. |
/
〈 |
|
〉 |