综述

急性胰腺炎的影像组学和代谢组学研究进展

  • 钟京谕 ,
  • 丁德芳 ,
  • 星月 ,
  • 胡扬帆 ,
  • 张欢 ,
  • 姚伟武
展开
  • 1.上海交通大学医学院附属同仁医院影像科,上海 200336
    2.上海交通大学医学院附属瑞金医院放射科,上海 200025
姚伟武 E-mail: yaoweiwuhuan@163.com

收稿日期: 2023-04-06

  录用日期: 2023-06-26

  网络出版日期: 2024-08-25

基金资助

国家自然科学基金项目(82302183);国家自然科学基金项目(82271934);上海市科学技术委员会项目(22YF1442400);上海市长宁区卫生健康委员会科研项目(2023QN01);上海交通大学医学院附属同仁医院科研项目(TRKYRC-XX202204);上海交通大学医学院附属同仁医院科研项目(TRYJ2021JC06);上海交通大学医学院附属同仁医院科研项目(TRGG202101);上海交通大学医学院附属同仁医院科研项目(TRYXJH18);上海交通大学医学院附属同仁医院科研项目(TRYXJH28);上海交通大学医学院附属瑞金医院科研项目(YW20220014)

Advances in research of radiomics and metabolomics in acute pancreatitis

  • ZHONG Jingyu ,
  • DING Defang ,
  • XING Yue ,
  • HU Yangfan ,
  • ZHANG Huan ,
  • YAO Weiwu
Expand
  • 1. Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
    2. Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Received date: 2023-04-06

  Accepted date: 2023-06-26

  Online published: 2024-08-25

摘要

急性胰腺炎(acute pancreatitis,AP)是易导致器官功能障碍和病死率较高的急腹症,及时预判疾病的发生、发展趋势,是及早开展针对性治疗和干预的前提。影像组学能高通量提取医学影像中的定量特征,实现数据深度挖掘,现已经发现其可用于AP的诊断及预测疾病严重程度、疾病进展和复发。CT影像组学可以从功能性腹痛、慢性胰腺炎和复发性AP患者中,鉴别出复发性AP患者,受试者操作特征曲线下面积(aera under curve,AUC)达到0.88,还可以准确预测48个月内的AP复发,AUC达到0.93。MRI影像组学可以预测AP患者未来是否会进展为中重症AP,其AUC达到0.85,效果优于现有临床评分系统;还可以有效预测胰周坏死的发生,其AUC达到0.92。代谢组学已证实,AP发生、发展过程中代谢谱存在动态变化。报道显示,活性代谢物作为预警指标可用于AP的诊断、病因鉴别和严重程度评估。尿液代谢组学被证明能准确诊断AP,其AUC达到0.91。血液代谢组学模型可鉴别胆源性AP、高脂性AP和酒精性AP患者,AUC分别达到了0.89、0.91和0.86,还可以准确预测AP患者未来是否会进展为中重症AP,AUC可达0.99。影像组学和代谢组学2种技术相结合可优势互补,从不同层次共同表征疾病发生、发展的过程,且两者间存在内在联系,能更有效地实现早期预警并及早干预。

本文引用格式

钟京谕 , 丁德芳 , 星月 , 胡扬帆 , 张欢 , 姚伟武 . 急性胰腺炎的影像组学和代谢组学研究进展[J]. 诊断学理论与实践, 2024 , 23(04) : 445 -451 . DOI: 10.16150/j.1671-2870.2024.04.014

Abstract

Acute pancreatitis (AP) is an acute abdominal disease that is prone to organ dysfunction, with high mortality. Timely prediction of the occurrence and development trend of the disease is the prerequisite for early treatment and intervention. Radiomics can extract quantitative features from medical images with high throughput and realize deep data mining. It can be used for the diagnosis of acute pancreatitis and prediction of severity, progression and recurrence of the disease. For the diagnosis of AP, CT radiomics can distinguish recurrent AP patients from functional abdominal pain, chronic pancreatitis, and recurrent AP patients, with an area under curve (AUC) of 0.88. For predicting AP recurrence, CT radiomics can accurately predict AP recurrence within 48 months, with an AUC of 0.93. For predicting the severity of AP, MRI radiomics can predict whether AP patients will progress to moderate to severe AP in the future, with an AUC of 0.85, which is better than clinical scoring systems. For predicting complications and progression of AP, MRI radiomics can effectively predict the occurrence of peripancreatic necrosis, with an AUC of 0.92. Metabolomics has confirmed that metabolic spectrum changes dynamically during the occurrence and development of AP. It has been reported that active metabolites can be used as early warning indicators for the diagnosis, etiology identification and severity assessment of AP. In addition, urinary metabolomics allows accurate diagnosis of AP, with an AUC of 0.91. For identifying the etiology of AP, the blood metabolomics models can identify patients with biliary AP, hyperlipidemic AP, and alcoholic AP, with AUCs of 0.89, 0.91, and 0.86, respectively. For predicting the severity of AP, the blood metabolomics models can accurately predict whether AP patients will progress to moderate to severe AP in the future, with an AUC of 0.99. The combination of the radiomics and metabolomics can complement each other's advantages and integrate multi-group data, which can jointly characterize the process and internal connections of disease occurrence and development from different levels, for achieving early warning and early intervention more effectively.

参考文献

[1] 中华医学会外科学分会胰腺外科学组. 中国急性胰腺炎诊治指南[J]. 中华外科杂志, 2021, 59(7):578-587.
  Chinese Pancreatic Surgery Association, Chinese Society of Surgery, Chinese Medical Association. Guidelines for diagnosis and treatment of acute pancreatitis in China (2021)[J]. Chin J Surg, 2021, 59(7):578-587.
[2] 中华医学会消化病学分会胰腺疾病学组, 中华胰腺病杂志编辑委员会, 中华消化杂志编辑委员会. 中国急性胰腺炎诊治指南(2019年,沈阳)[J]. 中华消化杂志, 2019, 39(11):721-730.
  Pancreatic Disease Group, Digestive Disease Brunch, Chinese Medical Association, Editorial Board for Chinese Journal of Pancreatology, Editorial Board for Chinese Journal of Digestion. Guideline for the diagnosis and treatment of acute pancreatitis in China[J]. Chin J Digestion, 2019, 39(11):721-730.
[3] 中国医疗保健国际交流促进会急诊医学分会, 脓毒症预防与阻断联盟. 重症急性胰腺炎预防与阻断急诊专家共识[J]. 中国急救医学, 2022, 42(5):369-379.
  Emergency Medicine Branch of China Association for the Promotion of International Exchange of Healthcare, Sepsis Prevention and Prevention Alliance. Expert consensus on prevention and blocking of severe acute pancreatitis in emergency department[J]. Chin J Crit Care Med, 2022, 42(5):369-379.
[4] 程峰, 邱兆磊, 郑传明, 等. JAK/STAT信号通路在大鼠重症急性胰腺炎早期作用机制的研究[J]. 中华全科医学, 2023, 21(1):41-44,65.
  CHENG F, QIU Z L, ZHENG C M, et al. Mechanism of JAK/STAT signaling pathway in the early stage severe acute pancreatitis rats[J]. Chin J Gen Pract, 2023, 21(1):41-44,65.
[5] 张娟, 雷静静, 刘琦, 等. 高脂血症性急性胰腺炎血液净化的应用进展[J]. 中国临床研究, 2022, 35(6):844-848.
  ZHANG J, LEI J J, LIU Q, et al. Application progress of blood purification in hyperlipidemic acute pancreatitis[J]. Chin J Clin Res, 2022, 35(6):844-848.
[6] FAGENHOLZ P J, CASTILLO C F, HARRIS N S, et al. Increasing United States hospital admissions for acute pancreatitis, 1988-2003[J]. Ann Epidemiol, 2007, 17(7):491-497.
[7] 金海港, 蒋桔红, 朱仲鑫. 1990—2019年中国胰腺炎疾病负担分析[J]. 肝胆胰外科杂志, 2022, 34(6):344-348.
  JIN H G, JIANG J H, ZHU Z X. Disease burden of pancreatitis from 1990 to 2019 in China[J]. J Hepatopancreatobiliary Surg, 2022, 34(6):344-348.
[8] 陈方莹, 柏小寅, 吴东. 预测急性胰腺炎严重程度的评分系统及生物标志物[J]. 中华内科杂志, 2019, 58(8):615-619.
  CHEN F Y, BAI X Y, WU D. The severity scoring system and prognostic biological markers of acute pancreatitis[J]. Chin J Intern Med, 2019, 58(8):615-619.
[9] LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4):441-446.
[10] HUANG E P, O'CONNOR J P B, MCSHANE L M, et al. Criteria for the translation of radiomics into clinically useful tests[J]. Nat Rev Clin Oncol, 2023, 20(2):69-82.
[11] 吴小佳, 汤琳, 刘欢, 等. 基于全脑影像组学的阿尔茨海默病诊断研究[J]. 重庆医科大学学报, 2022, 47(10):1187-1192.
  WU X J, TANG L, LIU H, et al. Diagnosis of Alzheimer's disease based on whole-brain radiomics[J]. J Chongqing Med Univ, 2022, 47(10):1187-1192.
[12] 李增华, 夏春华, 胡大涛, 等. 基于T2WI及动态对比增强MRI的影像组学模型预测肾细胞癌亚型[J]. 中国临床研究, 2023, 36(1):34-39.
  LI Z H, XIA C H, HU D T, et al. Prediction of renal cell carcinoma subtype by T2WI and dynamic contrast-enhanced MRI-based radiomics model[J]. Chin J Clin Res, 2023, 36(1): 34-39.
[13] 赵沙沙, 辛永康, 张凯, 等. 影像组学联合T1CE对Ⅱ、Ⅲ级胶质瘤IDH-1突变状态的预测价值[J]. 中华全科医学, 2023, 21(12):2106-2110.
  ZHAO S S, XIN Y K, ZHANG K, et al. Prediction of IDH-1 mutation status in WHO grade Ⅱ and Ⅲ gliomas by radiomics combined with T1-weighted contrast-enhanced image[J]. Chin J Gen Pract, 2023, 21(12):2106-2110.
[14] RINSCHEN M M, IVANISEVIC J, GIERA M, et al. Identification of bioactive metabolites using activity metabolomics[J]. Nat Rev Mol Cell Biol, 2019, 20(6):353-367.
[15] PIAZZA I, KOCHANOWSKI K, CAPPELLETTI V, et al. A Map of Protein-Metabolite Interactions Reveals Principles of Chemical Communication[J]. Cell, 2018, 172(1-2):358-372.e23.
[16] PAN Y, LEI X, ZHANG Y. Association predictions of genomics, proteinomics, transcriptomics, microbiome, metabolomics, pathomics, radiomics, drug, symptoms, environment factor, and disease networks: a comprehensive approach[J]. Med Res Rev, 2022, 42(1):441-461.
[17] ZHONG J, HU Y, XING Y, et al. A systematic review of radiomics in pancreatitis: applying the evidence level ra-ting tool for promoting clinical transferability[J]. Insights Imaging, 2022, 13(1):139.
[18] MASHAYEKHI R, PAREKH V S, FAGHIH M, et al. Radiomic features of the pancreas on CT imaging accurately differentiate functional abdominal pain, recurrent acute pancreatitis, and chronic pancreatitis[J]. Eur J Radiol, 2020, 123:108778.
[19] LIN Q, JI Y F, CHEN Y, et al. Radiomics model of contrast-enhanced MRI for early prediction of acute pancrea-titis severity[J]. J Magn Reson Imaging, 2020, 51(2):397-406.
[20] 文瑶, 刘丹, 喻媛, 等. 基于临床联合CT影像组学特征列线图预测急性胰腺炎预后[J]. 中国医学影像技术, 2022, 38(11):1675-1679.
  WEN Y, LIU D, YU Y, et al. Nomogram based on clinical and CT radiomics features for predicting prognosis of acute pancreatitis[J] Chin J Med Imaging Technol, 2022, 38(11):1675-1679.
[21] 林峤, 李兵, 刘宁川, 等. 基于增强CT的影像组学模型预测坏死性胰腺炎的初步研究[J]. 影像研究与医学应用, 2022, 6(18):28-31.
  LIN Q, LI B, LIU N C, et al. Radiomic model of contras-tenhanced computed tomography for the early prediction of necrotizing pancreatitis: a preliminary study[J]. J Ima-ging Res Med Appl, 2022, 6(18):28-31.
[22] 范海云, 陈基明, 陈亮亮, 等. 基于胰腺周围脂肪间隙CT影像组学预测早期急性胰腺炎进展的价值[J]. 放射学实践, 2022, 37(6):683-689.
  FAN H Y, CHEN J M, CHEN L L, et al. The value of CT based radiomics of peripancreatic adipose space in predicting progression of early acute pancreatitis[J]. Radiol Pract, 2022, 37(6):683-689.
[23] IRANMAHBOOB A K, KIERANS A S, HUANG C, et al. Preliminary investigation of whole-pancreas 3D histogram ADC metrics for predicting progression of acute pancreatitis[J]. Clin Imaging, 2017, 42:172-177.
[24] ZHOU T, XIE C L, CHEN Y, et al. Magnetic resonance imaging-based radiomics models to predict early extrapancreatic necrosis in acute pancreatitis[J]. Pancreas, 2021, 50(10):1368-1375.
[25] CHEN Y, CHEN T W, WU C Q, et al. Radiomics model of contrast-enhanced computed tomography for predic-ting the recurrence of acute pancreatitis[J]. Eur Radiol, 2019, 29(8):4408-4417.
[26] 崔伟, 张文娟, 周利华, 等. CT检查纹理分析对儿童急性胰腺炎复发的预测价值[J]. 中华消化外科杂志, 2021, 20(4):459-465.
  CUI W, ZHANG WJ, ZHOU LH, et al. Predictive value of CT texture analysis for recurrence in children with acute pancreatitis[J]. Chin J Dig Surg, 2021, 20(4):459-465.
[27] 胡云涛, 黄小华, 刘念, 等. 基于磁共振T2WI序列影像组学预测急性胰腺炎复发的价值[J]. 磁共振成像, 2021, 12(10):12-15,21.
  HU Y T, HUANG X H, LIU N, et al. The value of T2WI sequence-based radiomics in predicting recurrence of acute pancreatitis[J]. Chin J Magn Reson Imaging, 2021, 12(10):12-15,21.
[28] HU Y, LIU N, TANG L, et al. Three-dimensional radiomics features of magnetic resonance T2-weighted ima-ging combined with clinical characteristics to predict the recurrence of acute pancreatitis[J]. Front Med (Lausanne), 2022, 9:777368.
[29] PENG Y, HONG J, RAFTERY D, et al. Metabolomic-based clinical studies and murine models for acute pancreatitis disease: a review[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(7):166123.
[30] XIAO H, HUANG J H, ZHANG X W, et al. Identification of potential diagnostic biomarkers of acute pancreatitis by serum metabolomic profiles[J]. Pancreatology, 2017, 17(4):543-549.
[31] VILLASE?OR A, KINROSS J M, LI J V, et al. 1H NMR global metabolic phenotyping of acute pancreatitis in the emergency unit[J]. J Proteome Res, 2014, 13(12):5362-5375.
[32] YANG Q, SUN J, CHEN Y Q. Multi-dimensional, comprehensive sample extraction combined with LC-GC/MS analysis for complex biological samples: application in the metabolomics study of acute pancreatitis[J]. RSC Adv, 2016, 6:25837-25849.
[33] XU H, ZHANG L, KANG H, et al. Serum metabonomics of mild acute pancreatitis[J]. J Clin Lab Anal, 2016, 30(6):990-998.
[34] TAKIS P G, TADDEI A, PINI R, et al. Fingerprinting acute digestive diseases by untargeted NMR based metabolomics[J]. Int J Mol Sci, 2018, 19(11):3288.
[35] LUSCZEK E R, PAULO JA, SALTZMAN J R, et al. Urinary 1H-NMR metabolomics can distinguish pancreatitis patients from healthy controls[J]. JOP, 2013, 14(2):161-170.
[36] HUANG J H, HE D, CHEN L, et al. GC-MS based metabolomics strategy to distinguish three types of acute pancreatitis[J]. Pancreatology, 2019, 19(5):630-637.
[37] LOU D, SHI K, LI H P, et al. Quantitative metabolic analysis of plasma extracellular vesicles for the diagnosis of severe acute pancreatitis[J]. J Nanobiotechnology, 2022, 20(1):52.
[38] KHAN J, SOLAKIVI T, SEPP?NEN H, et al. Serum lipid and fatty acid profiles are highly changed in patients with alcohol induced acute pancreatitis[J]. Pancrea-tology, 2012, 12(1):44-48.
[39] SILVA-VAZ P, JARAK I, RATO L, et al. Plasmatic oxidative and metabonomic profile of patients with different degrees of biliary acute pancreatitis severity[J]. Antioxidants (Basel), 2021, 10(6):988.
[40] SKOURAS C, ZHENG X, BINNIE M, et al. Increased levels of 3-hydroxykynurenine parallel disease severity in human acute pancreatitis[J]. Sci Rep, 2016, 6:33951.
[41] 黄湘平, 吴玲, 谭超超. 基于液相色谱-串联质谱法的轻症和重症急性胰腺炎差异的血清代谢组学研究[J]. 中国全科医学, 2023, 26(9):1118-1124.
  HUANG X P, WU L, TAN C C. Serum metabolomic study on the difference between mild and severe acute pancreatitis based on liquid chromatography-tandem mass spectrometry[J] Chin Gen Pract, 2023, 26(9):1118-1124.
[42] HOLZINGER A, HAIBE-KAINS B, JURISICA I. Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data[J]. Eur J Nucl Med Mol Imaging, 2019, 46(13):2722-2730.
[43] 张馨予, 刘威, 杜娟娟, 等. 影像组学和基因组学在急性胰腺炎中的应用进展[J]. 国际医学放射学杂志, 2022, 45(5):568-571.
  ZHANG X Y, LIU W, DU J J, et al. Application progress of radiomics and genomics in acute pancreatitis[J]. Int J Med Radiol, 2022, 45(5):568-571.
[44] KLONTZAS M E, KOLTSAKIS E, KALARAKIS G, et al. A pilot radiometabolomics integration study for the characterization of renal oncocytic neoplasia[J]. Sci Rep, 2023, 13(1):12594.
[45] 孙泽恩, 刘玉洁, 欧阳倩颖, 等. 组学技术在肿瘤耐药领域的研究进展:从单组学到多组学联合应用[J]. 中南大学学报(医学版), 2021, 46(6):620-627.
  SUN Z E, LIU Y J, OUYANG Q Y, et al. Research progress of omics technology in the field of tumor resistance: From single-omics to multi-omics combination application[J]. J Cent S Univ (Med Sci), 2021, 46(6):620-627.
文章导航

/