收稿日期: 2024-08-26
录用日期: 2024-10-08
网络出版日期: 2025-02-25
基金资助
癌症、心脑血管、呼吸和代谢性疾病防治研究国家科技重大专项”数智化1型糖尿病防控新体系建立“(2023ZD0509100)
Progress in diagnosis and treatment of pediatric diabetes in China
Received date: 2024-08-26
Accepted date: 2024-10-08
Online published: 2025-02-25
全球0~19岁儿童青少年的1型糖尿病(type 1 diabetes mellitus ,T1DM)患病率约为1 211.9/1 000万,发病率为149.5/100万人年;中国0~19岁儿童青少年T1DM患病率约为56/100万,发病率为6.1/100万人年。儿童青少年2型糖尿病(type 2 diabetes mellitus, T2DM)的发病率也逐年上升。流行病学数据显示,美国青少年T2DM的患病率从2001年的34/10万增至2009年的46/10万和2017年的67/10万。我国儿童T2DM也呈明显上升趋势,儿童T2DM患病率由1995年的4.1/10万上升至2010年的10.0/10万。中国儿童糖尿病的诊断标准采用的是2019年世界卫生组织颁布的标准。与儿童相关的糖尿病亚型包括T1DM、T2DM、混合型糖尿病、其他特殊类型糖尿病。成人糖尿病的典型临床表现为多饮、多尿、多食和体重下降(三多一少),儿童T1DM患儿三多一少症状较明显,T2DM可较为隐匿。传统T1DM治疗主要采用胰岛素治疗,但无法从根本上解决胰岛功能减退的问题,阻止/延缓β细胞损伤,保护残存的胰岛功能,已成为T1DM治疗的新研究方向。除传统的胰岛素治疗和生活方式干预外,免疫治疗、人工胰腺和干细胞移植等新的治疗甚至治愈糖尿病的技术已初步展现出令人振奋的临床效果,不仅为糖尿病的未来治疗提供了新方向,也有可能使糖尿病从不治之症转变为可治之症。
裴舟 , 罗飞宏 . 中国儿童糖尿病诊治进展[J]. 诊断学理论与实践, 2024 , 23(05) : 461 -466 . DOI: 10.16150/j.1671-2870.2024.05.001
The global incidence of type 1 diabetes mellitus (T1DM) in children and adolescents aged 0-19 years is about 1 211.9/10 million, with an incidence rate of 149.5/1 million person-years. In China, the incidence of T1DM in children and adolescents aged 0-19 years is about 56/1 million, with an incidence rate of 6.1/1 million person-years. The incidence of type 2 diabetes mellitus (T2DM) in children and adolescents has been rising annually. Epidemiological data shows that the incidence of T2DM among adolescents in the United States increased from 34/100 000 in 2001 to 46/100 000 in 2009 and to 67/100 000 in 2017. In China, the incidence of pediatric T2DM has also shown a significant upward trend, rising from 4.1/100 000 in 1995 to 10.0/100 000 in 2010. The diagnostic criteria for pediatric diabetes in China follow the standards set by the World Health Organization in 2019. Diabetes subtypes related to children include T1DM, T2DM, mixed-type diabetes, and other specific types of diabetes. The typical clinical manifestations of adult diabetes are polydipsia, polyuria, polyphagia, and weight loss (the ‘three P’s and one less’). However, in children with T1DM, these symptoms are more pronounced, while T2DM may present more subtly. Traditional treatment for T1DM primarily involves insulin therapy, but it cannot fundamentally address the issue of impaired pancreatic function. Preventing or delaying β-cell damage and protecting the remaining pancreatic function have become new research directions in T1DM treatment. In addition to traditional insulin therapy and lifestyle interventions, new treatments such as immunotherapy, artificial pancreas, and stem cell transplantation have shown promising clinical results. These advances not only provide new directions for the future treatment of diabetes but also have the potential to transform diabetes from an incurable disease into a treatable one.
[1] | DONG C, WU G, LI H, et al. Type 1 and type 2 diabetes mortality burden: Predictions for 2030 based on Bayesian age-period-cohort analysis of China and global mortality burden from 1990 to 2019[J]. J Diabetes Investig, 2024, 15(5):623-633. |
[2] | MOBASSERI M, SHIRMOHAMMADI M, AMIRI T, et al. Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis[J]. Health Promot Perspect, 2020, 10(2):98-115. |
[3] | LAWRENCE J M, DIVERS J, ISOM S, et al. Trends in prevalence of type 1 and type 2 diabetes in children and adolescents in the US, 2001-2017[J]. JAMA, 2021, 326(8):717-727. |
[4] | WU H, ZHONG J, YU M, et al. Incidence and time trends of type 2 diabetes mellitus in youth aged 5-19 years: a population-based registry in Zhejiang, China, 2007 to 2013 [J]. BMC Pediatr, 2017, 17(1):85. |
[5] | SHAH A S, ZEITLER P S, WONG J, et al. ISPAD Clinical Practice Consensus Guidelines 2022: Type 2 diabetes in children and adolescents[J]. Pediatr Diabetes, 2022, 23(7):872-902. |
[6] | 中华医学会儿科学分会内分泌遗传代谢学组, 中华儿科杂志编辑委员会. 中国儿童1型糖尿病标准化诊断与治疗专家共识(2020版)[J]. 中华儿科杂志, 2020, 58(6):447-454. |
The Subspecialty Group of Endocrinologic, Hereditary and Metabolic Diseases, The Society of Pediatrics, Chinese Medical Association; the Editorial Board, Chinese Journal of Pediatrics. Expert consensus on the standardized diagnosis and management of type 1 diabetes mellitus in Chinese children (2020)[J]. Chin J Pediatr, 2020, 58(6):447-454. | |
[7] | 中华医学会儿科学分会内分泌遗传代谢学组. 儿童青少年2型糖尿病诊治中国专家共识[J]. 中华儿科杂志, 2017, 55(6):404-410. |
The Subspecialty Grou[ of Endocrinologic, Hereditary and Metabolic Diseases, the Society of Pediatrics, Chinese Medical Association. Type 2 diabetes in the child and adolescent: consensus in China[J]. Chin J Pediatr, 2017, 55(6):404-410. | |
[8] | BONNEFOND A, UNNIKRISHNAN R, DORIA A, et al. Monogenic diabetes[J]. Nat Rev Dis Primers, 2023, 9(1):12. |
[9] | URANO F. Wolfram syndrome: diagnosis, management, and treatment[J]. Curr Diab Rep, 2016, 16(1):6. |
[10] | BEN-SKOWRONEK I. IPEX syndrome: genetics and treatment options[J]. Genes (Basel), 2021, 12(3):323. |
[11] | 中华医学会儿科学分会内分泌遗传代谢学组. 儿童单基因糖尿病临床诊断与治疗专家共识[J]. 中华儿科杂志, 2019, 57(7):508-514. |
The Subspecialty Group of Endocrinological,Hereditary and Metabolic Disease, the Society of Pediatrics, Chinese Medical Association. Expert consensus on the diagnosis and management of monogenic diabetes in children and adolescents[J]. Chin J Pediatr, 2019, 57(7):508-514. | |
[12] | HEROLD K C, GITELMAN S E, EHLERS M R, et al.Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of respon-ders[J]. Diabetes, 2013, 62(11):3766-3774. |
[13] | HEROLD K C, BUNDY B N, LONG S A, et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes[J]. N Engl J Med, 2019, 381(7):603-613. |
[14] | KEYMEULEN B, VAN MAURIK A, INMAN D, et al. A randomised, single-blind, placebo-controlled, dose-fin-ding safety and tolerability study of the anti-CD3 monoclonal antibody otelixizumab in new-onset type 1 diabetes[J]. Diabetologia, 2021, 64(2):313-324. |
[15] | HALLER M J, GITELMAN S E, GOTTLIEB P A, et al. Anti-thymocyte globulin/G-CSF treatment preserves β cell function in patients with established type 1 diabetes[J]. J Clin Invest, 2015, 125(1):448-455. |
[16] | LIN A, MACK J A, BRUGGEMAN B, et al. Low-dose ATG/GCSF in established type 1 diabetes: a five-year follow-up report[J]. Diabetes, 2021, 70(5):1123-1129. |
[17] | 陈双, 杨涛, 顾愹. 1型糖尿病的诊断与免疫治疗[J]. 国际内分泌代谢杂志, 2021, 41(6):578-582. |
CHEN S, YANG T, GU R. Diagnosis and immunotherapy of type 1 diabetes mellitus[J]. Int J Endocrinol Metab, 2021, 41(6):578-582. | |
[18] | ORBAN T, BUNDY B, BECKER D J, et al. Costimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment[J]. Diabetes Care, 2014, 37(4):1069-1075. |
[19] | RUSSELL W E, BUNDY B N, ANDERSON M S, et al. Abatacept for delay of type 1 diabetes progression in stage 1 relatives at risk: A randomized, double-masked, controlled trial[J]. Diabetes Care, 2023, 46(5):1005-1013. |
[20] | 黄玫, 张梅. 人工胰腺治疗1型糖尿病的临床研究进展[J]. 中华糖尿病杂志, 2023, 15(5):465-469. |
HUANG M, ZHANG M. Clinical research advances of artificial pancreas for type 1 diabetes mellitus[J]. Chin J Diab, 2023, 15(5):465-469. | |
[21] | WARE J, ALLEN J M, BOUGHTON C K, et al. Randomi-zed trial of closed-loop control in very young children with type 1 diabetes[J]. N Engl J Med, 2022, 386(3):209-219. |
[22] | LAKSHMAN R, BOUGHTON C, HOVORKA R. The changing landscape of automated insulin delivery in the management of type 1 diabetes[J]. Endocr Connect, 2023, 12(8):e230132. |
[23] | CASTELLANOS L E, BALLIRO C A, SHERWOOD J S, et al. Performance of the insulin-only ilet bionic pancreas and the bihormonal iLet using dasiglucagon in adults with type 1 diabetes in a home-use setting[J]. Diabetes Care, 2021, 44(6):e118-e120. |
[24] | TSOUKAS M A, MAJDPOUR D, YALE J F, et al. A fully artificial pancreas versus a hybrid artificial pancreas for type 1 diabetes: a single-centre, open-label, randomised controlled, crossover, non-inferiority trial[J]. Lancet Digit Health, 2021, 3(11):e723-e732. |
[25] | MAJDPOUR D, TSOUKAS M A, YALE J F, et al. Fully automated artificial pancreas for adults with type 1 diabetes using multiple hormones: exploratory experiments[J]. Can J Diabetes, 2021, 45(8):734-742. |
[26] | MADANI S, AMANZADI M, AGHAYAN H R, et al. Investigating the safety and efficacy of hematopoietic and mesenchymal stem cell transplantation for treatment of T1DM: a systematic review and meta-analysis[J]. Syst Rev, 2022, 11(1):82. |
[27] | 王树森, 蔡湘衡. 临床胰岛移植的发展趋势[J]. 中华器官移植杂志, 2023, 44(6):327-333. |
WANG S S, CAI X H. Trends in clinical islet transplantation[J]. Chin J Organ Transplant, 2023, 44(6):327-333. | |
[28] | 杜媛媛, 邓宏魁. 1型糖尿病治疗的新希望:人化学诱导多能干细胞衍生胰岛细胞移植[J]. 中华内科杂志, 2023, 62(9):1043-1045. |
DU Y Y, DENG H K. A novel approach for the treatment of type 1 diabetes mellitus: transplantation of pancreatic islets derived from human chemically induced pluripotent stem cells[J]. Chin J Int Med, 2023, 62(9):1043-1045. | |
[29] | WANG S, DU Y, ZHANG B, et al. Transplantation of chemically induced pluripotent stem-cell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient[J]. Cell, 2024, 187(22):6152-6164 |
[30] | WU J, LI T, GUO M, et al. Treating a type 2 diabetic patient with impaired pancreatic islet function by personali-zed endoderm stem cell-derived islet tissue[J]. Cell Discov, 2024, 10(1):45. |
[31] | YUAN X, WANG R, HAN B, et al. Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes[J]. Nat Commun, 2022, 13(1):6356. |
[32] | DE GROOT P, NIKOLIC T, PELLEGRINI S, et al. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial[J]. Gut, 2021, 70(1):92-105. |
/
〈 |
|
〉 |