收稿日期: 2025-01-28
录用日期: 2025-06-09
网络出版日期: 2025-06-25
基金资助
国家自然科学基金(82070740);国家自然科学基金(81700647);国家自然科学基金(81870492);国家重点研发计划(2016YFC1305402);苏州市科技计划项目(SKYD2022017);国家重点基础研究发展计划(973计划)重点项目(2012CB517700)
Global and Chinese burden of chronic kidney disease due to type 2 diabetes and associated risk factors from 1990 to 2021
Received date: 2025-01-28
Accepted date: 2025-06-09
Online published: 2025-06-25
目的:评估1990年至2021年间,全球及中国不同年龄、性别、区域和社会人口指数(socio-demographic index,SDI)人群中2型糖尿病(type 2 diabetes,T2D)导致的慢性肾脏病(chronic kidney disease,CKD)(CKD-T2D)的疾病负担。方法:基于2021年全球疾病负担研究(Global Burden of Disease Study,GBD)数据,分析204个国家和地区的CKD-T2D发病率、患病率、死亡率和伤残调整寿命年(disability-adjusted life years,DALYs),计算绝对数值及其95%不确定性区间(uncertainty interval,UI)。结果:1990年至2021年间,全球CKD-T2D的疾病负担显著增加,2021年新发病例达2 012 024例(95% UI为1 857 800~2 154 288),较1990年增长167.2%(95%UI为153.5%~182.6%),年龄标准化发病率(age-standardized incidence rate,ASIR)为23.07/10万[95%UI为(21.40~24.72)/10万],较1990年上升21.0%(95%UI为15.0%~27.5%)。区域分析显示,北非和中东地区CKD-T2D的ASIR较高(42.802/10万)。相比于1990年,2021年中国的CKD-T2D发病人数显著增加,达354 157例(95% UI为321 265~382 784)粗发病率增长177.6%(95%UI为154.8%~205.5%),ASIR仅微升7.8%[95%UI为(-0.1%)~17.8%];其余指标的粗率增长,而年龄标准化率(age-standardized rate,ASR)下降。2021年,全球65~74岁人群的CKD-T2D发病最高[65~69岁人群新发364 163例(95%UI为272 571~475 468例),70~74岁人群新发366 045例(95%UI为286 728~459 891例)],其中男性负担高于女性[65~69岁,男性新发187 097例(95%UI为140 064~243 571例),女性新发177 066例(95%UI为132 338~231 769例);70~74岁,男性新发187 216例(95%UI为146 377~234 997例),女性新发178 830例(95%UI为140 938~224 801例)]。SDI分层显示,在1990年至2021年间,高SDI地区CKD-T2D的ASIR最高,且持续上升;而低SDI地区的CKD-T2D死亡率最高,且改善有限。高血糖、肥胖、高热量饮食和高血压是CKD-T2D的主要危险因素。结论:CKD-T2D仍是重大公共卫生问题,中低收入国家及老年、男性群体的疾病负担突出。中国的粗率攀升,但年龄标准化死亡率(age-standardized mortality rates,ASMR)和DALYs下降。
史曼曼 , 马毓华 , 郑金鑫 , 柯燕容 , 王语欣 , 刘剑 , 王伟铭 . 1990年至2021年全球及中国2型糖尿病导致的慢性肾脏病疾病负担及危险因素分析[J]. 诊断学理论与实践, 2025 , 24(03) : 268 -278 . DOI: 10.16150/j.1671-2870.2025.03.005
Objective To assess the burden of chronic kidney disease (CKD) caused by type 2 diabetes (T2D) (CKD-T2D) among populations of different ages, genders, regions, and socio-demographic index (SDI) levels globally and in China from 1990 to 2021. Methods Based on data from the 2021 Global Burden of Disease Study (GBD), incidence, prevalence, mortality, and disability-adjusted life years (DALYs) of CKD-T2D in 204 countries and regions were analyzed, with absolute numbers and their 95% uncertainty intervals (UIs) calculated. Results From 1990 to 2021, the global burden of CKD-T2D increased significantly. In 2021, there were 2 012 024 (95%UI: 1 857 800-2 154 288) new cases, marking a 167.2% (95%UI: 153.5%-182.6%) increase from 1990. The age-standardized incidence rate (ASIR) reached 23.07 per 100 000 (95%UI: 21.40-24.72), an increase of 21.0% (15.0%-27.5%) since 1990. Regional analysis showed that North Africa and the Middle East had the highest ASIR (42.802 per 100 000). Compared to 1990, China's CKD-T2D incidence rose significantly to 354,157 cases (95%UI: 321 265-382 784), with crude incidence increasing by 177.6% (95%UI: 154.8%- 205.5%) and ASIR rising slightly by 7.8% [95%UI: (-0.1%) to 17.8%]. For other indicators, crude rates increased whereas age-standardized rates declined. In 2021, CKD-T2D incidence was highest among people aged 65-74 worldwide [364 163 new cases in ages 65-69 (95%UI: 272 571-475 468) and 366 045 in ages 70-74 (95%UI: 286 728-459 891)], with males bearing a higher burden than females [65-69: males 187 097 (95%UI: 140 064-243 571), females 177 066 (95%UI: 132 338-231 769); 70-74: males 187 216 (95%UI: 146 377-234 997), females 178 830 (95%UI: 140 938-224 801)]. SDI stratification indicated that from 1990 to 2021, high-SDI regions had the highest ASIR with a continuous upward trend, while low-SDI regions had the highest mortality rates with limited improvement. Hyperglycemia, obesity, high-calorie diets, and hypertension were the main risk factors for CKD-T2D. Conclusion CKD-T2D remains a major public health issue, with a particularly high disease burden among elderly males and in low- and middle-income countries. While crude rates have risen in China, age-standardized mortality rate (ASMR) and DALYs have declined.
| [1] | JHA R, LOPEZ-TREVINO S, KANKANAMALAGE H R, et al. Diabetes and renal complications: an overview on pathophysiology, biomarkers and therapeutic interventions[J]. Biomedicines, 2024, 12(5):1098. |
| [2] | OOI Y G, SARVANANDAN T, HEE N K Y, et al. Risk prediction and management of chronic kidney disease in people living with type 2 diabetes mellitus[J]. Diabetes Metab J, 2024, 48(2):196-207. |
| [3] | VAN RAALTE D H, BJORNSTAD P, CHERNEY D Z I, et al. Combination therapy for kidney disease in people with diabetes mellitus[J]. Nat Rev Nephrol, 2024, 20(7):433-446. |
| [4] | DING X, LI X, YE Y, et al. Epidemiological patterns of chronic kidney disease attributed to type 2 diabetes from 1990-2019[J]. Front Endocrinol (Lausanne), 2024,15:1383777. |
| [5] | Institute for Health Metrics and Evaluation. Global health data exchange[EB/OL]. 2021. http://ghdx.healthdata.org/gbd-results-tool. |
| [6] | GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet,2024, 403(10440):2133-2161. |
| [7] | GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024, 403(10440):2100-2132. |
| [8] | Institute for Health Metrics and Evaluation. Global Burden of Disease Study 2021 (GBD 2021) data resources[EB/OL]. 2024. https://ghdx.healthdata.org/gbd-2021. |
| [9] | Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease[J]. Kidney Int, 2024, 105(4S):S117-S314. |
| [10] | GBD 2021 Risk Factors Collaborators. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024, 403(10440):2162-2203. |
| [11] | SOBAMOWO H, PRABHAKAR S S. The kidney in aging: physiological changes and pathological implications[J]. Prog Mol Biol Transl Sci, 2017,146:303-340. |
| [12] | LYTVYN Y, BJORNSTAD P, VAN RAALTE D H, et al. The new biology of diabetic kidney disease-mechanisms and therapeutic implications[J]. Endocr Rev, 2020, 41(2):202-231. |
| [13] | CLOTET-FREIXAS S, ZASLAVER O, KOTLYAR M, et al. Sex differences in kidney metabolism may reflect sex-dependent outcomes in human diabetic kidney disease[J]. Sci Transl Med, 2024, 16(737):eabm2090. |
| [14] | PIANI F, MELENA I, TOMMERDAHL K L, et al. Sex-related differences in diabetic kidney disease: A review on the mechanisms and potential therapeutic implications[J]. J Diabetes Complications, 2021, 35(4):107841. |
| [15] | LOEFFLER I, ZILLER N. Sex-related aspects in diabetic kidney disease-an update[J]. J Clin Med, 2023, 12(8):2834. |
| [16] | BOWE B, XIE Y, LI T, et al. Changes in the US burden of chronic kidney disease from 2002 to 2016: An analysis of the Global Burden of Disease Study[J]. JAMA Netw Open, 2018, 1(7):e184412. |
| [17] | SARAN R, ROBINSON B, ABBOTT K C, et al. US Renal Data System 2016 annual data report: epidemiology of kidney disease in the United States[J]. Am J Kidney Dis, 2017, 69(3Suppl 1):A7-A8. |
| [18] | SINDHU D, SHARMA G S, KUMBALA D. Management of diabetic kidney disease: where do we stand? A narrative review[J]. Medicine (Baltimore), 2023, 102(13):e33366. |
| [19] | NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults[J]. Lancet, 2024, 403(10431):1027-1050. |
| [20] | ZU C, LIU M, SU X, et al. Association of body weight time in target range with the risk of kidney outcomes in patients with overweight/obesity and type 2 diabetes mellitus[J]. Diabetes Care, 2024, 47(3):371-378. |
| [21] | RUZE R, LIU T, ZOU X, et al. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments[J]. Front Endocrinol (Lausanne), 2023,14:1161521. |
| [22] | ROSENFELD R M, KELLY J H, AGARWAL M, et al. Dietary interventions to treat type 2 diabetes in adults with a goal of remission: An expert consensus statement from the American College of Lifestyle Medicine[J]. Am J Lifestyle Med, 2022, 16(3):342-362. |
| [23] | GALLARDO-GóMEZ D, SALAZAR-MARTíNEZ E, ALFONSO-ROSA R M, et al. Optimal dose and type of physical activity to improve glycemic control in people diagnosed with type 2 diabetes: A systematic review and meta-analysis[J]. Diabetes Care, 2024, 47(2):295-303. |
| [24] | GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Di-sease Study 2017[J]. Lancet, 2018, 392(10159):1736-1788. |
| [25] | NCD Countdown 2030 collaborators. NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4[J]. Lancet, 2018, 392(10152):1072-1088. |
| [26] | NUGENT R, BERTRAM M Y, JAN S, et al. Investing in non-communicable disease prevention and management to advance the Sustainable Development Goals[J]. Lancet, 2018, 391(10134):2029-2035. |
/
| 〈 |
|
〉 |