1. |
J. Han, J. Yang, W. Gao, H. Bai, Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 31, 2010155 ( 2021). https://doi.org/10.1002/adfm.202010155
|
2. |
S. Cho, S. Kang, A. Pandya, R. Shanker, Z. Khan et al., Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. ACS Nano 11, 4346-4357 ( 2017). https://doi.org/10.1021/acsnano.7b01714
|
3. |
|
4. |
J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, S.-H. Yu, Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc. 139, 9921-9926 ( 2017). https://doi.org/10.1021/jacs.7b03227
|
5. |
H. Kim, M. Seo, J.-W. Kim, D.-K. Kwon, S.-E. Choi et al., Highly stretchable and wearable thermotherapy pad with micropatterned thermochromic display based on Ag nanowire-single-walled carbon nanotube composite. Adv. Funct. Mater. 29, 1901061 ( 2019). https://doi.org/10.1002/adfm.201901061
|
6. |
|
7. |
L. Zhang, X. Zhang, H. Zhang, L. Xu, D. Wang et al., Semi-embedded robust MXene/AgNW sensor with self-healing, high sensitivity and a wide range for motion detection. Chem. Eng. J. 434, 134751 ( 2022). https://doi.org/10.1016/j.cej.2022.134751
|
8. |
W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao et al., Highly conductive, air-stable silver Nanowire@Iongel composite films toward flexible transparent electrodes. Adv. Mater. 28, 7167-7172 ( 2016). https://doi.org/10.1002/adma.201600358
|
9. |
J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang et al., Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 24, 2874-2878 ( 2012). https://doi.org/10.1002/adma.201200055
|
10. |
H.-S. Lim, J.-M. Oh, J.-W. Kim, One-way continuous deposition of monolayer MXene nanosheets for the formation of two confronting transparent electrodes in flexible capacitive photodetector. ACS Appl. Mater. Interfaces 13, 25400-25409 ( 2021). https://doi.org/10.1021/acsami.1c05769
|
11. |
H.-M. Sim, H.-K. Kim, Highly flexible Ag nanowire network covered by a graphene oxide nanosheet for high-performance flexible electronics and anti-bacterial applications. Sci. Technol. Adv. Mater. 22, 794-807 ( 2021). https://doi.org/10.1080/14686996.2021.1963640
|
12. |
D. Wen, X. Wang, L. Liu, C. Hu, C. Sun et al., Inkjet printing transparent and conductive MXene (Ti 3C 2Tx) films: a strategy for flexible energy storage devices. ACS Appl. Mater. Interfaces 13, 17766-17780 ( 2021). https://doi.org/10.1021/acsami.1c00724
|
13. |
R. Li, X. Ma, J. Li, J. Cao, H. Gao et al., Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO 2/MXene heterostructures. Nat. Commun. 12, 1587 ( 2021). https://doi.org/10.1038/s41467-021-21852-7
|
14. |
J.-W. Liu, J.-L. Wang, Z.-H. Wang, W.-R. Huang, S.-H. Yu, Manipulating nanowire assembly for flexible transparent electrodes. Angew. Chem. Int. Ed. 53, 13477-13482 ( 2014). https://doi.org/10.1002/anie.201408298
|
15. |
J. Wang, C. Teng, Y. Jiang, Y. Zhu, L. Jiang, Wetting-induced climbing for transferring interfacially assembled large-area ultrathin pristine graphene film. Adv. Mater. 31, e1806742 ( 2019). https://doi.org/10.1002/adma.201806742
|
16. |
G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen et al., Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 6, 1501882 ( 2016). https://doi.org/10.1002/aenm.201501882
|
17. |
F. Yin, H. Lu, H. Pan, H. Ji, S. Pei et al., Highly sensitive and transparent strain sensors with an ordered array structure of AgNWs for wearable motion and health monitoring. Sci. Rep. 9, 2403 ( 2019). https://doi.org/10.1038/s41598-019-38931-x
|
18. |
|
19. |
C. Ma, H. Liu, C. Teng, L. Li, Y. Zhu et al., Wetting-induced fabrication of graphene hybrid with conducting polymers for high-performance flexible transparent electrodes. ACS Appl. Mater. Interfaces 12, 55372-55381 ( 2020). https://doi.org/10.1021/acsami.0c15734
|
20. |
Q. Fan, J. Miao, X. Liu, X. Zuo, W. Zhang et al., Biomimetic hierarchically silver nanowire interwoven MXene mesh for flexible transparent electrodes and invisible camouflage electronics. Nano Lett. 22, 740-750 ( 2022). https://doi.org/10.1021/acs.nanolett.1c04185
|
21. |
Y. Han, Y. Liu, L. Han, J. Lin, P. Jin, High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding. Carbon 115, 34-42 ( 2017). https://doi.org/10.1016/j.carbon.2016.12.092
|
22. |
S.-K. Duan, Q.-L. Niu, J.-F. Wei, J.-B. He, Y.-A. Yin et al., Water-bath assisted convective assembly of aligned silver nanowire films for transparent electrodes. Phys. Chem. Chem. Phys. 17, 8106-8112 ( 2015). https://doi.org/10.1039/C4CP05989A
|
23. |
L. Chang, X. Zhang, Y. Ding, H. Liu, M. Liu et al., Ionogel/copper grid composites for high-performance, ultra-stable flexible transparent electrodes. ACS Appl. Mater. Interfaces 10, 29010-29018 ( 2018). https://doi.org/10.1021/acsami.8b09023
|
24. |
Z. Wang, X. Sun, Z. Guo, R. Xi, L. Xu et al., Fabrication of submicron linewidth silver grid/ionogel hybrid films for highly stable flexible transparent electrodes via asymmetric wettability template-assisted self-assembly. Chem. Eng. J. 469, 144065 ( 2023). https://doi.org/10.1016/j.cej.2023.144065
|
25. |
A. Khan, V.H. Nguyen, D. Muñoz-Rojas, S. Aghazadehchors, C. Jiménez et al., Stability enhancement of silver nanowire networks with conformal ZnO coatings deposited by atmospheric pressure spatial atomic layer deposition. ACS Appl. Mater. Interfaces 10, 19208-19217 ( 2018). https://doi.org/10.1021/acsami.8b03079
|
26. |
S.R. Das, Q. Nian, M. Saei, S. Jin, D. Back et al., Single-layer graphene as a barrier layer for intense UV laser-induced damages for silver nanowire network. ACS Nano 9, 11121-11133 ( 2015). https://doi.org/10.1021/acsnano.5b04628
|
27. |
Y. Kim, T.I. Ryu, K.-H. Ok, M.-G. Kwak, S. Park et al., Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 25, 4580-4589 ( 2015). https://doi.org/10.1002/adfm.201501046
|
28. |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti 3AlC 2. Adv. Mater. 23, 4248-4253 ( 2011). https://doi.org/10.1002/adma.201102306
|
29. |
|
30. |
W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Flexible, transparent, and conductive Ti 3C 2T x MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14, 16643-16653 ( 2020). https://doi.org/10.1021/acsnano.0c01635
|
31. |
H. Tang, H. Feng, H. Wang, X. Wan, J. Liang et al., Highly conducting MXene-silver nanowire transparent electrodes for flexible organic solar cells. ACS Appl. Mater. Interfaces 11, 25330-25337 ( 2019). https://doi.org/10.1021/acsami.9b04113
|
32. |
M. Cheng, M. Ying, R. Zhao, L. Ji, H. Li et al., Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16, 16996-17007 ( 2022). https://doi.org/10.1021/acsnano.2c07111
|
33. |
Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue et al., Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96, 768-777 ( 2016). https://doi.org/10.1016/j.carbon.2015.10.004
|
34. |
R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti 3C 2T x MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787-44795 ( 2018). https://doi.org/10.1021/acsami.8b18347
|
35. |
Y. Cao, T.G. Morrissey, E. Acome, S.I. Allec, B.M. Wong et al., A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29, 1605099 ( 2017). https://doi.org/10.1002/adma.201605099
|
36. |
Q. Tan, L. Yuan, G. Liang, A. Gu, Flexible, transparent, strong and high dielectric constant composite film based on polyionic liquid coated silver nanowire hybrid. Appl. Surf. Sci. 576, 151827 ( 2022). https://doi.org/10.1016/j.apsusc.2021.151827
|
37. |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides MXenes. Science 353, 1137-1140 ( 2016). https://doi.org/10.1126/science.aag2421
|
38. |
X. Chen, G. Xu, G. Zeng, H. Gu, H. Chen et al., Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a welding flexible transparent electrode. Adv. Mater. 32, e1908478 ( 2020). https://doi.org/10.1002/adma.201908478
|
39. |
Y. Tang, W. He, G. Zhou, S. Wang, X. Yang et al., A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering. Nanotechnology 23, 355304 ( 2012). https://doi.org/10.1088/0957-4484/23/35/355304
|
40. |
H.B. Lee, W.-Y. Jin, M.M. Ovhal, N. Kumar, J.-W. Kang, Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review. J. Mater. Chem. C 7, 1087-1110 ( 2019). https://doi.org/10.1039/C8TC04423F
|
41. |
W.Y. Jin, M.M. Ovhal, H.B. Lee, B. Tyagi, J.W. Kang, Scalable, all-printed photocapacitor fibers and modules based on metal-embedded flexible transparent conductive electrodes for self-charging wearable applications. Adv. Energy Mater. 11(4), 2003509 ( 2020). https://doi.org/10.1002/aenm.202003509
|
42. |
K.-J. Ko, H.B. Lee, J.-W. Kang, Flexible, wearable organic light-emitting fibers based on PEDOT: PSS/Ag-fiber embedded hybrid electrodes for large-area textile lighting. Adv. Mater. Technol. 5, 2000168 ( 2020). https://doi.org/10.1002/admt.202000168
|
43. |
Y. Cheng, Y. Lu, M. Xia, L. Piao, Q. Liu et al., Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion. Compos. Sci. Technol. 215, 109023 ( 2021). https://doi.org/10.1016/j.compscitech.2021.109023
|
44. |
M. Zhu, X. Yan, Y. Lei, J. Guo, Y. Xu et al., An ultrastrong and antibacterial silver nanowire/aligned cellulose scaffold composite film for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14, 14520-14531 ( 2022). https://doi.org/10.1021/acsami.1c23515
|
45. |
Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 ( 2017). https://doi.org/10.1002/adma.201701583
|
46. |
L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti 3C 2T x MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11, 25399-25409 ( 2019). https://doi.org/10.1021/acsami.9b07294
|
47. |
|