[47] |
D.M. Mothibi, C.M. Khalique. Symmetry (Basel), 7 ( 2015), pp. 949-961 DOI: 10.3390/sym7020949
|
[48] |
|
[49] |
|
[50] |
Y.L. Jiang, Y. Lu, C. Chen. J. Nonlinear Math. Phys., 23 (2016), pp. 157-166
|
[51] |
G.W. Bluman, S. Kumei. Symmetries and Differential Equations, Applied Mathematical Science. Springer, Berlin (1989)
|
[52] |
|
[53] |
T. Chaolu, G. Bluman. J. Math. Anal. Appl., 411 (2014), pp. 281-296
|
[54] |
R.K. Gupta, K. Singh. Commun. Nonlinear. Sci. Numer. Simul., 16 (2011), pp. 4189-4196
|
[55] |
R. Jiwari, V. Kumar, K. Ram, S.A. Ali. Int. J. Numer. Method. H., 27 ( 2017), pp. 1332-1350 DOI: 10.1108/hff-04-2016-0145
|
[56] |
|
[57] |
L. Kaur, R.K. Gupta. Math. Method. Appl. Sci., 36 ( 2013), pp. 584-600 DOI: 10.1002/mma.2617
|
[58] |
C.M. Khalique, O.D. Adeyemo. Mathematics, 8 (2020), p. 1692
|
[59] |
A. Sjöberg. Appl. Math. Comput., 184 (2007), pp. 608-616
|
[60] |
E. Godlewski, P.A. Raviart. Numer. Math., 97 (2004), pp. 81-130
|
[61] |
|
[62] |
Y. Zhou, M. Wang, Z. Li. Phys. Lett. A, 216 (1996), pp. 67-75
|
[63] |
I.S. Gradshteyn, I.M. Ryzhik. Table of Integrals, Series and Products, 7th ed. Academic Press, New York (2007)
|
[64] |
M. Abramowitz, I.A. Stegun. National Bureau of Standards Applied Mathematics Series Vol. 55, U.S.A Government Printing Office, Washington, D.C. (1964)
|
[65] |
|
[66] |
|
[1] |
|
[2] |
X.Y. Gao. Appl. Math. Lett., 91 (2019), pp. 165-172
|
[3] |
O.D. Adeyemo, T. Motsepa, C.M. Khalique. Alex. Eng. J., 61 (2022), pp. 185-194
|
[4] |
C.M. Khalique, O.D. Adeyemo. Results Phys., 18 (2020), p. 103197
|
[5] |
X.X. Du, B. Tian, Q.X. Qu, Y.Q. Yuan, X.H. Zhao. solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma, Chaos Solitons Fract., 134 (2020), p. 109709
|
[6] |
C.R. Zhang, B. Tian, Q.X. Qu, L. Liu, H.Y. Tian. Z. Angew. Math. Phys., 71 (2020), pp. 1-19
|
[7] |
C.M. Khalique, O.D. Adeyemo. J. Ocean Eng. Sci.(2021), p. 106393.
|
[8] |
A.H. Salas, C.A. Gomez. Math. Probl. Eng. (2010), p. 2010
|
[9] |
M.S. Osman, A.M. Wazwaz. Math. Method. Appl. Sci., 42 ( 2019), pp. 6277-6283 DOI: 10.1002/mma.5721
|
[10] |
|
[11] |
M.G. Hafez, M. Kauser, M.T. Akter. J. Math. Comput. Sci., 4 (2014), pp. 2582-2593
|
[12] |
M.A. Akbar, N.H.M. Ali. Springerplus, 3 (2014), p. 344
|
[13] |
N.A. Kudryashov. Optik (Stuttg), 183 (2019), pp. 642-649
|
[14] |
C.L. Zheng, J.P. Fang. Chaos Soliton Fract., 27 (2006), pp. 1321-1327
|
[15] |
X.Y. Wen. Appl. Math. Comput., 217 (2010), pp. 1367-1375
|
[16] |
A.M. Wazwaz. Partial Differential Equations. CRC Press, Boca Raton, Florida, USA (2002)
|
[17] |
C. Chun, R. Sakthivel. Comput. Phys. Commun., 181 (2010), pp. 1021-1024
|
[18] |
C.H. Gu. Soliton Theory and Its Application. Zhejiang Science and Technology Press, Zhejiang (1990)
|
[19] |
X. Zeng, D.S. Wang. Appl. Math. Comput., 212 (2009), pp. 296-304
|
[67] |
|
[68] |
R. Grimshaw, D. Takagi, Y. Ma, A. Stewart, Lecture 16: Solitary waves-geophysical fluid dynamics, [Online]. Available: https://gfd.whoi.edu/wp-content/uploads/sites/18/2018/03/lecture16-roger136604.pdf.
|
[69] |
|
[70] |
|
[71] |
J.R. Apel. An atlas of oceanic internal solitary waves, 322 (2002), pp. 1-40
|
[72] |
A.N. Bogdanov, C. Panagopoulos, The emergence of magnetic skyrmions, 2020, ArXiv preprint arXiv:2003.09836.
|
[73] |
|
[74] |
|
[75] |
T.F. Duda, J.C. Preisig. IEEE J. Ocean.Eng, 24 (1999), pp. 16-32
|
[76] |
J. Zhou, X. Zhang, P.H. Rogers. J. Acoust. Soc., 90 ( 1991), pp. 2042-2054 DOI: 10.1121/1.401632
|
[77] |
A.C. Warn-Varnas, S.A. Chin-Bing, D.B. King. Surv.Geophys, 24 (2003), pp. 39-79
|
[78] |
Shallow-water wave theory, Available: http://www.coastalwiki.org/wiki/shallow-waterwavetheory. accessed: 15 01, 2022,
|
[79] |
E. Noether. Nachr. v. d. Ges. d. Wiss. zu Göttingen, 2 (1918), pp. 235-257
|
[80] |
N.H. Ibragimov, A.H. Kara, F.M. Mahomed. Nonlinear Dynam., 15 (1998), pp. 115-136
|
[20] |
A.J.M. Jawad, M. Mirzazadeh, A. Biswas. Pramana, 83 (2014), pp. 457-471
|
[21] |
N.A. Kudryashov, N.B. Loguinova. Appl. Math. Comput., 205 (2008), pp. 396-402
|
[22] |
R. Hirota. The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)
|
[23] |
L.V. Ovsiannikov. Group Analysis of Differential Equations. Academic Press, New York (1982)
|
[24] |
G.W. Bluman, S. Kumei. Symmetries and Differential Equations. Springer-Verlag, New York (1989)
|
[25] |
P.J. Olver. Applications of Lie Groups to Differential Equations, second ed. Springer-Verlag, Berlin (1993)
|
[26] |
N.H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, Vols 1-3, CRC Press, Boca Raton, Florida, 1994-1996.
|
[27] |
N.H. Ibragimov. Elementary Lie Group Analysis and Ordinary Differential Equations. John Wiley & Sons, Chichester, NY (1999)
|
[28] |
L. Zhang, C.M. Khalique. Discrete and Continuous dynamical systems Series S, 11 (4) (2018), pp. 777-790
|
[29] |
M. Wang, X. Li, J. Zhang. Phys. Lett. A, 24 (2005), pp. 1257-1268
|
[30] |
V.B. Matveev, M.A. Salle. Darboux Transformations and Solitons. Springer, New York (1991)
|
[31] |
Y. Chen, Z. Yan. Chaos Solitons Fract., 26 (2005), pp. 399-406
|
[32] |
N.A. Kudryashov. Chaos Solitons Fract., 24 (2005), pp. 1217-1231
|
[33] |
J.H. He, X.H. Wu. Chaos Solitons Fract., 30 (2006), pp. 700-708
|
[34] |
|
[35] |
A.M. Wazwaz. Appl. Math. Comput., 169 (2005), pp. 321-338
|
[36] |
J. Hu. Phys. Lett. A, 287 (2001), pp. 81-89
|
[37] |
A. Biswas, A.J.M. Jawad, W.N. Manrakhan. Opt. Laser Technol., 44 (2012), pp. 2265-2269
|
[38] |
A.M. Wazwaz. J. Nat. Sci. Math., 1 (2007), pp. 1-13
|
[39] |
V.E. Zakharov, E.A. Kuznetsov. Zhurnal Eksp. Teoret.Fiz, 66 (1974), pp. 594-597
|
[40] |
S.A. Khan, W. Masood. Phys.Plasmas, 15 (2008), p. 062301
|
[41] |
B.S. Ahmed, E. Zerrad, A Math. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 14 (2013), pp. 281-286
|
[42] |
E.V. Krishnan, A. Biswas. Phys. wave phenom., 18 (2010), pp. 256-261
|
[43] |
M.A. Abdou. Nonlinear Sci. Lett. B, 1 (2011), pp. 99-110
|
[44] |
A.M. Wazwaz. Commun. Nonlinear Sci. Numer. Simul., 10 (2005), pp. 597-606
|
[45] |
A.M. Wazwaz. the modified ZK equation, and its generalized forms, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), pp. 1039-1047
|
[46] |
A. Biswas. Phys. Lett. A, 373 (2009), pp. 2931-2934
|