Please wait a minute...
首 页   关 于   联系我们
上海交通大学学报(农业科学版)  2016, Vol. 34 Issue (1): 36-44    DOI: 10.3969/J.ISSN.1671-9964.2016.01.007
0
  本期目录 | 过刊浏览 | 高级检索 |
不同碳氮有机物料对有机菜田土壤细菌多样性的影响
杨昊1(), 张瑞1, 叶俊2, 蔡保松1(), 黄丹枫1()
1.上海交通大学 农业与生物学院, 农业部都市农业(南方)重点实验室, 上海200240
2.新南威尔士大学 生物技术学院, 悉尼2052
Effect of Bacterial Community Structure Diversity with Different Carbon and Nitrogen Organic Materials Treatments in Organic Vegetable Soil
Hao YANG1(), Gonzalez Perez Pablo1, Rui ZHANG1, Jun YE2, Bao-song CAI1, Dan-feng HUANG1()
1.Key Laboratory of Urban Agriculture(South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai 200240, China
2.School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
全文: PDF(2672 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

通过模拟试验, 利用聚合酶链式反应-变性梯度凝胶电泳法(PCR-DGGE), 研究了施入不同碳氮有机物料(秸秆、苜蓿、有机肥、尿素)56 d后, 有机生产系统菜田土壤细菌群落结构的特征。结果表明, 常规和有机生产系统土壤的细菌群落结构有明显差异。由DGGE图谱Shannon-Wiener多样性指数分析得知, 有机背景处理的细菌多样性整体高于常规背景处理, 且有机生产系统土壤加秸秆处理(OS)多样性最高, 加入尿素后细菌多样性降低, 相反, 加入苜蓿后细菌多样性升高。非加权组平均法(UPGMA)聚类分析将常规和有机背景土壤分为两大族群。DGGE条带测序和系统进化树表明, 30个条带归属为ProteobacteriaAcidobacteriaActinobacteriaFirmicutesVerrucomicrobia。常规土壤加苜蓿(CA)处理出现的特征性条带B13与有机背景处理的共有条带B28分别与Bacillus属和Pseudomonas假单胞菌属同源性最高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨昊
张瑞
叶俊
蔡保松
黄丹枫
关键词 秸秆苜蓿尿素有机土壤PCR-DGGE细菌群落结构    
Abstract

Through the simulation test, PCR-DGGE method was used to investigate the effects of different carbon and nitrogen organic materials on bacterial community structure of organic vegetable production system soil.Results showed that bacterial community structure of conventional and organic production system soils were significantly different.By analyzing the Shannon-Wiener diversity index, overall the bacterial diversity of organic background soil treatments was higher than conventional background soil treatments.The bacterial diversity of organic production system soil with straw(OS)was the highest.Bacterial diversity decrease or increase after adding urea or alfalfa respectively.Conventional and organic production system soils were divided into two ethnic clusters by clustering analysis.Phylogenetic tree showed that the 30 closely related species were attributed to Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Verrucomicrobia.The band B13 of CA(conventional production system soil with alfalfa)and the common band B28 of organic background treatment had the highest homology with Bacillus and Pseudomonas respectively.

Key wordsstraw    alfalfa    urea    organic soil    PCR-DGGE    bacterial community structure
收稿日期: 2014-12-22      出版日期: 2016-03-08
基金资助:上海市科委(12231205103);上海市农委[沪农科攻字(2012)第 2 号];SJTU-UNSW联合研究与发展基金(13X120020003);上海市园艺学重点学科培育与建设项目资助
作者简介:

作者简介: 杨昊(1988-), 男, 硕士生, 研究方向:菜田土壤微生物多样性, E-mail: yanghaoiloveu@163.com;

通讯作者: 黄丹枫(1956-), 女, 教授, 博士生导师, 研究方向:园艺作物生理生态, E-mail:hdf@sjtu.edu.cn; 蔡保松(1971-), 男, 副教授, 硕士生导师, 研究方向:园艺作物生理生态, E-mail:czstl@sjtu.edu.cn

引用本文:   
杨昊, 张瑞, 叶俊, 蔡保松, 黄丹枫. 不同碳氮有机物料对有机菜田土壤细菌多样性的影响[J]. 上海交通大学学报(农业科学版), 2016, 34(1): 36-44.
Hao YANG, Gonzalez Perez Pablo, Rui ZHANG, Jun YE, Bao-song CAI, Dan-feng HUANG. Effect of Bacterial Community Structure Diversity with Different Carbon and Nitrogen Organic Materials Treatments in Organic Vegetable Soil. Journal of Shanghai Jiaotong University (Agricultural Sciences), 2016, 34(1): 36-44.
链接本文:  
http://www.qk.sjtu.edu.cn/jsjtua/CN/10.3969/J.ISSN.1671-9964.2016.01.007      或      http://www.qk.sjtu.edu.cn/jsjtua/CN/Y2016/V34/I1/36
土壤类型
Soil type
pH 全碳/
(g kg-1)
Total C
全氮/
(g·kg-1)
Total N
C / N 可溶性有机氮 /
(mg·kg-1)
SON
硝态氮/
(mg·kg-1)
Nitrate
铵态氮/
(mg·kg-1)
Ammonium
微生物量碳/
(mg·kg-1)
MBC
微生物量氮/
(mg·kg-1)
MBN
有机土壤
Organic soil
6.80±0.13 26.2±3.4 3.1±0.03 8.4±1.1 94.6±9.6 42.06±7.78 3.35±0.37 75.6±13.1 18.5±3.8
常规土壤
Conventional
soil
7.10±0.09 19.2±2.5 2.2±0.05 8.7±1.0 59.1±6.4 68.88±13.60 3.71±0.39 65.2±13.7 7.9±1.4
Tab.1  供试土壤基本理化性质
Fig.1  土壤细菌群落的PCR-DGGE图谱

C为常规土壤; CU为常规土壤+尿素; CA为常规土壤+苜蓿; O为有机土壤; OO为有机土壤+有机肥; OU为有机土壤+尿素; OS为有机土壤+秸秆; OA为有机土壤+苜蓿

处理
Treatment
多样性指数(H)
Diversity index
丰富度指数(D)
Richness
均匀度指数(E)
Evenness
C 2.611 2.523 0.942
CU 2.600 2.409 0.938
CA 2.777 2.920 0.943
O 2.855 3.141 0.938
OO 2.843 3.150 0.934
OU 2.848 3.100 0.936
OS 3.002 3.568 0.944
OA 2.870 3.305 0.943
Tab.2  不同处理土壤细菌群落多样性、丰富度和均匀度指数
Fig.2  细菌DGGE图谱UPGMA聚类分析

C为常规土壤; CU为常规土壤+尿素; CA为常规土壤+苜蓿; O为有机土壤; OO为有机土壤+有机肥; OU为有机土壤+尿素; OS为有机土壤+秸秆; OA为有机土壤+苜蓿

条带
Band
登录号
Genebank
Accession No.
序列长度
Sequence
lehgth(bp)
系统分类
Phylogenetic
affiliation
相似菌株
Closest Identified Relative
(Genebank Accession No.)
同源性
Homology(%)
B1 KM281157 435 Firmicutes; Clostridiaceae; Clostridium. Uncultured Clostridium sp.clone T3-69 16S ribosomal RNA gene, partial sequence(KM200463) 99%
B2 KM281158 434 Acidobacteria; Acidobacteriales. Uncultured Acidobacteriales bacterium clone E2006TS6.44 16S ribosomal RNA gene, partial sequence(GU983317) 99%
B5 KM281161 434 Acidobacteria; Uncultured Acidobacteria bacterium clone AKYG1109 16S ribosomal RNA gene, partial sequence(AY921847) 99%
B7 KM281163 438 Uncultured bacterium(HQ119238) 99%
B8 KM281164 434 Acidobacteria; Uncultured Acidobacteria bacterium clone HG-B02190 16S ribosomal RNA gene, partial sequence(JN409248) 99%
B9 KM281165 434 Uncultured bacterium clone WIF2 16S ribosomal RNA gene, partial Sequence(HQ166676) 100%
B10 KM281166 437 Uncultured bacterium(JF708475) 92%
B11 KM281167 435 Uncultured bacterium clone CP63 16S ribosomal RNA gene, partial sequence(JX133269) 100%
B12 KM281168 437 Uncultured bacterium(JF708475) 100%
B13 KM281169 436 Firmicutes; Bacillaceae; Bacillus. Uncultured Bacillus sp.clone SGR274 16S ribosomal RNA gene, partial sequence(JQ793581) 94%
B14 KM281170 434 Proteobacteria; Rhodocyclales; Rhodocyclaceae. Uncultured Rhodocyclaceae bacterium partial 16S rRNA gene, clone SBROB5_44(LN555043) 98%
B15 KM281171 436 Proteobacteria; Alphaproteobacteria; Uncultured alpha proteobacterium(JN038900) 99%
B16 KM281172 435 Uncultured bacterium clone MCzcultivatedPlana46 16S ribosomal RNA gene, partial sequence(HM444534) 99%
B18 KM281174 438 Acidobacteria; Uncultured Acidobacteria(JN409214) 93%
B19 KM281175 439 Actinobacteria; Intrasporangiaceae; Humibacillus. Humibacillus xanthopallidus gene for 16S rRNA, partial sequence, strain:S32487(AB648995) 99%
B21 KM281177 431 Uncultured bacterium isolate DGGE gel band CB-9 16S ribosomal RNA gene, partial sequence(KJ667548) 99%
B24 KM281180 433 Actinobacteria; Micromonosporaceae; Planosporangium. Planosporangium thailandense strain HSS8-18 16S ribosomal RNA gene, partial sequence(NR_108119) 98%
B26 KM281181 436 Proteobacteria; Xanthomonadales; Sinobacteraceae. Uncultured Sinobacteraceae bacterium partial 16S rRNA gene, clone SBROB5_36(LN555035) 94%
B28 KM281183 435 Proteobacteria; Pseudomonadaceae; Pseudomonas. Pseudomonas sp.CC-MHH0089 16S ribosomal RNA gene, partial sequence(KJ720680) 99%
B29 KM281184 431 Uncultured bacterium clone BacC-s_023 16S ribosomal RNA gene, partial sequence(EU335200) 98%
B30 KM281185 434 Uncultured bacterium partial 16S rRNAgene, clone SICT499_N9D2_16S_B(LN570594) 99%
B31 KM281186 435 Uncultured bacterium(DQ973988) 97%
B32 KM281187 434 Uncultured bacterium(GU320659) 91%
B34 KM281188 433 Actinobacteria; Nocardioidaceae; Marmoricola. Marmoricola sp.M57 16S ribosomal RNA gene, partial sequence(KC464831) 99%
B35 KM281189 435 Acidobacteria; Uncultured Acidobacteria(JN408907) 99%
B39 KM281192 433 Actinobacteria; Propionibacterineae; Nocardioidaceae; Marmoricola. Uncultured Marmoricola sp.clone BG1-39 16S ribosomal RNA gene, partial sequence(JX079124) 97%
B42 KM281194 434 Verrucomicrobia; Verrucomicrobiales; Verrucomicrobiaceae. Uncultured Verrucomicrobiaceae(FJ542838) 98%
B43 KM281195 434 Uncultured bacterium(JX133426) 100%
B44 KM281196 422 Uncultured bacterium(DQ499290) 95%
B46 KM281198 437 Uncultured bacterium isolate DGGE gel band CB-16 16S ribosomal RNA gene, partial sequence(KJ667555) 94%
Tab.3  细菌DGGE图谱条带的序列比对结果
Fig.3  细菌的系统发育树
[1] Sun H, Deng S, Raun W.Bacterial community structure and diversity in a century-old manure-treated agroecosystem[J].Applied and Environmental Microbiology, 2004, 70(10):5868-5874.
doi: 10.1128/AEM.70.10.5868-5874.2004 pmid: 15466526
[2] Wei D, Yang Q, Zhang J Z, et al.Bacterial community structure and diversity in a black soil as affected by long-term fertilization[J].Pedosphere, 2008, 18(5):582-592.
doi: 10.1016/S1002-0160(08)60052-1
[3] 毕明丽, 宇万太, 姜子绍, 等.施肥和土壤管理对土壤微生物生物量碳、氮和群落结构的影响[J].生态学报, 2010, 30(1):32-42.
[4] Chu H, Lin X, Fujii T, et al.Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management[J].Soil Biology and Biochemistry, 2007, 39(11):2971-2976.
doi: 10.1016/j.soilbio.2007.05.031
[5] 许仁良, 王建峰, 张国良, 等.秸秆、有机肥及氮肥配合使用对水稻土微生物和有机质含量的影响[J].生态学报, 2010, 30(13):3584-3590.
[6] 邢德峰, 任南琪, 宋佳秀, 等.不同16SrDNA靶序列对DGGE分析活性污泥群落的影响[J].环境科学, 2006, 27(7):1424-1428.
doi: 10.3321/j.issn:0250-3301.2006.07.033
[7] Li Z, He L, Miao X.Cultivable bacterial community from South China Sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis[J].Current microbiology, 2007, 55(6):465-472.
doi: 10.1007/s00284-007-9035-2
[8] 陈哲, 陈春兰, 秦红灵, 等.化肥对稻田土壤细菌多样性及硝化、反硝化功能菌组成的影响[J].生态学报, 2009, 29(11):6142-6147.
[9] 徐永刚, 宇万太, 马强, 等.长期不同施肥制度对潮棕壤微生物生物量碳、氮及细菌群落结构的影响[J].应用生态学报, 2010, 21(8):2078-2085.
[10] Sarathchandra S, Ghani A, Yeates G, et al.Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils[J].Soil Biology and Biochemistry, 2001, 33(7):953-964.
doi: 10.1016/S0038-0717(00)00245-5
[11] Yao S, Merwin I A, Bird G W, et al.Orchard floor management practices that maintain vegetative or biomass groundcover stimulate soil microbial activity and alter soil microbial community composition[J].Plant and soil, 2005, 271(1-2):377-389.
doi: 10.1007/s11104-004-3610-0
[12] 刘丽, 徐明恺, 汪思龙, 等.杉木人工林土壤质量演变过程中土壤微生物群落结构变化[J].生态学报, 2013, 33(15):4692-4706.
doi: 10.5846/stxb201205020628
[13] 王曙光, 侯彦林.尿素肥斑扩散对土壤微生物群落结构的影响[J].生态学报, 2004, 24(10):2269-2274.
[14] Abbasi M W, Ahmed N, Zaki M J, et al.Potential of Bacillus species against Meloidogyne javanica parasitizing eggplant(Solanum melongena L.)and induced biochemical changes[J].Plant and Soil, 2014, 375(1-2):159-173.
doi: 10.1007/s11104-013-1931-6
[15] 任小平, 谢关林, 王笑.铜绿假单胞菌ZJ1999对水稻纹枯病的防治及其在水稻上的定殖[J].中国生物防治, 2006, 22(01):54-57.
doi: 10.3321/j.issn:1005-9261.2006.01.013
[16] 楼兵干, 张炳欣, Ryder M.铜绿假单胞菌株CR56在黄瓜和番茄根围的定殖能力[J].浙江大学学报(农业与生命科学版), 2001, 27(2):67-70.
doi: 10.3321/j.issn:1008-9209.2001.02.014
[17] Kloepper J W, Leong J, Teintze M, et al.Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria[J].Nature, 1980, 286(5776):885-886.
doi: 10.1038/286885a0
[18] Topp E, Mulbry W M, Zhu H, et al.Characterization of s-triazine herbicide metabolism by a Nocardioides sp.isolated from agricultural soils[J].Applied and Environmental Microbiology, 2000, 66(8):3134-3141.
doi: 10.1128/AEM.66.8.3134-3141.2000 pmid: 10919761
[19] 姜钰, 董怀玉, 徐秀德, 等.放线菌在植病生防中的研究进展[J].杂粮作物, 2005, 25(5):329-331.
doi: 10.3969/j.issn.2095-0896.2005.05.024
[20] Muyzer G, De Waal E C, Uitterlinden A G.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J].Applied and Environmental Microbiology, 1993, 59(3):695-700.
doi: 10.1080/15389588.2015.1013535 pmid: 202176
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
沪交ICP备05221
版权所有:《上海交通大学学报(农业科学版)》编辑部
主管单位:中华人民共和国教育部 主办单位:上海交通大学 出版单位:上海交通大学学报编辑部
地址:上海市七莘路2678号 上海交通大学七宝校区36号信箱 邮政编码:201101 电话:021-64789728 电子邮件:xuebao@sjtu.edu.cn