Home  中文
Orginal Article

Dichlorvos Degradation by REMI Mutants of Trichoderma koningii

Expand
  • 1.School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
    2.Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240, China
    3.School of Plant Protection, Shenyang Agricultural University, Shenyang 110161, China

Received date: 2014-11-13

  Online published: 2016-03-08

Abstract

The dichlorvos degradation abilities of Trichoderma koningii mutants obtained by REMI (restriction enzyme mediated integration) and the optimal conditions for effective degradation were studied.Results showed both the wild type (T30) and mutants (TK-1, TK-2, TK-3, TK-5, TK-7, TK-8, TK-21, TK-38, TK-53, TK-30, TK-42)were able to degrade dichlorvos.TK-3 could reach 98% dichlorvos decomposition, which is the most efficient among mutants.Dichlorvos degradation rate was closely associated with glucose, dichlorvos initial concentration and pH of the medium.It was found that glucose at 1 000 μg/mL, pH 7.0 and dichlorvos at 500 μg/mL were the optimal conditions for effectively degrading dichlorvos by the mutant TK-3.The degradation efficiency of TK-3 would decline if dichlorvos concentration exceeded 1 000 μg/mL.

Cite this article

Xu YUAN, Li-ping JIAN, Jie CHEN . Dichlorvos Degradation by REMI Mutants of Trichoderma koningii[J]. Journal of Shanghai Jiaotong University (Agricultural Sciences), 2016 , 34(1) : 85 -90 . DOI: 10.3969/J.ISSN.1671-9964.2016.01.015

References

[1] Brotman Y, Landau U, Cuadros-Inostroza á, et al.Trichoderma-plant root colonization:escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance[J].PLoS Pathogens, 2013, 9(3):e1003221.
[2] Monte E.Understanding Trichoderma:between biotechnology and microbial ecology[J].International Microbiology, 2010, 4(1):1-4.
[3] Mohamed Z A, Hashem M, Alamri S A.Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride[J].Toxicon, 2014, 86:51-58.
[4] Fu K H, Fan L L, Li Y Y, et al.Tmac1, a transcription factor which regulated high affinity copper transport in Trichoderma reesei[J].Microbiological Research, 2012, 167(9):536-543.
[5] Zhao X H, Wang J.A brief study on the degradation kinetics of seven organophosphorus pesticides in skimmed milk cultured with Lactobacillus spp. at 42° C[J].Food Chemistry, 2012, 131(1):300-304.
[6] Porras-Alfaro A, Bayman P.Hidden fungi, emergent properties:endophytes and microbiomes[J].Phytopathology, 2011, 49(1):291-315.
[7] Carreras-Villase?or N, Sánchez-Arreguín J A, Herrera-Estrella A H.Trichoderma:sensing the environment for survival and dispersal[J].Microbiology, 2012, 158(1):3-16.
[8] L?rz H, Baker B, Schell J.Gene transfer to cereal cells mediated by protoplast transformation[J].Molecular and General Genetics MGG, 1985, 199(2):178-182.
[9] Woloshuk C, Seip E, Payne G, et al.Genetic transformation system for the aflatoxin-producing fungus Aspergillus flavus[J].Applied and Environmental Microbiology, 1989, 55(1):86-90.
[10] Sun W L, Chen Y P, Liu L X, et al.Conidia immobilization of T-DNA inserted Trichoderma atroviride mutant AMT-28 with dichlorvos degradation ability and exploration of biodegradation mechanism[J].Bioresource Technology, 2010, 101(23):9197-9203.
[11] Fu K H, Liu L X, Fan L L, et al.Accumulation of copper in Trichoderma reesei transformants, constructed with the modified Agrobacterium tumefaciens-mediated transformation technique[J].Biotechnology Letters, 2010, 32(12):1815-1820.
[12] Liu S W, Wang Z Y, Guo Z J.Isolation and transformation of Trichoderma viride protoplasts[J].Chinese Journal of Agricultural Biotechnology, 2004, 1(02):67-72.
[13] Zhou X Y, Xu S F, Liu L X, et al.Degradation of cyanide by Trichoderma mutants constructed by restriction enzyme mediated integration(REMI)[J].Bioresource Technology, 2007, 98(15):2958-2962.
[14] Huang Y Q, Liang C H, Chen J.Production and Regeneration of Trichoderma Strain T23 Protoplast[J].Journal of Jilin Agricultural University, 2007, 29(1):24-27.
[15] Tang J, Li Y Y, Fu K H, et al.Disruption of hex1 in Trichoderma atroviride leads to loss of Woronin body and decreased tolerance to dichlorvos[J].Biotechnology Letters, 2014, 36(4):751-759.
[16] 孙文良, 胡晓璐, 吴萌章等.根癌农杆菌介导的深绿木霉菌T23遗传转化研究[J].上海交通大学学报(农业科学版), 2009, 27(5):489-493.
[16] Sun W L, Hu X L, Wu M Z, et al.Agrobacterium tumefaciens-mediated Transformation(ATMT)of Trichoderma atroviride T23[J].Journal of Shanghai Jiaotong University(Agricultural science), 2009, 27(5):489-493.
Outlines

/

Copyright © 2015 Journal of Shanghai Jiaotong University (Agricultural Sciences), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd