|
|
Dichlorvos Degradation by REMI Mutants of Trichoderma koningii |
Xu YUAN1,2, Li-ping JIAN3, Jie CHEN1,2( ) |
1.School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China 2.Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240, China 3.School of Plant Protection, Shenyang Agricultural University, Shenyang 110161, China |
|
|
Abstract The dichlorvos degradation abilities of Trichoderma koningii mutants obtained by REMI (restriction enzyme mediated integration) and the optimal conditions for effective degradation were studied.Results showed both the wild type (T30) and mutants (TK-1, TK-2, TK-3, TK-5, TK-7, TK-8, TK-21, TK-38, TK-53, TK-30, TK-42)were able to degrade dichlorvos.TK-3 could reach 98% dichlorvos decomposition, which is the most efficient among mutants.Dichlorvos degradation rate was closely associated with glucose, dichlorvos initial concentration and pH of the medium.It was found that glucose at 1 000 μg/mL, pH 7.0 and dichlorvos at 500 μg/mL were the optimal conditions for effectively degrading dichlorvos by the mutant TK-3.The degradation efficiency of TK-3 would decline if dichlorvos concentration exceeded 1 000 μg/mL.
|
Received: 13 November 2014
Published: 08 March 2016
|
|
|
|
|
Degradation rate of dichlorovs by different Trichoderma mutants
|
|
Degradation efficiency of TK-3 under different pH
|
|
Degradation efficiency of TK-3 under different glucose concentrations
|
|
Degradation efficiency of TK-3 under different initial dichlorvos concentrations
|
[1] |
Brotman Y, Landau U, Cuadros-Inostroza Á, et al.Trichoderma-plant root colonization:escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance[J].PLoS Pathogens, 2013, 9(3):e1003221.
|
[2] |
Monte E.Understanding Trichoderma:between biotechnology and microbial ecology[J].International Microbiology, 2010, 4(1):1-4.
|
[3] |
Mohamed Z A, Hashem M, Alamri S A.Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride[J].Toxicon, 2014, 86:51-58.
|
[4] |
Fu K H, Fan L L, Li Y Y, et al.Tmac1, a transcription factor which regulated high affinity copper transport in Trichoderma reesei[J].Microbiological Research, 2012, 167(9):536-543.
|
[5] |
Zhao X H, Wang J.A brief study on the degradation kinetics of seven organophosphorus pesticides in skimmed milk cultured with Lactobacillus spp. at 42° C[J].Food Chemistry, 2012, 131(1):300-304.
|
[6] |
Porras-Alfaro A, Bayman P.Hidden fungi, emergent properties:endophytes and microbiomes[J].Phytopathology, 2011, 49(1):291-315.
|
[7] |
Carreras-Villaseñor N, Sánchez-Arreguín J A, Herrera-Estrella A H.Trichoderma:sensing the environment for survival and dispersal[J].Microbiology, 2012, 158(1):3-16.
|
[8] |
Lörz H, Baker B, Schell J.Gene transfer to cereal cells mediated by protoplast transformation[J].Molecular and General Genetics MGG, 1985, 199(2):178-182.
|
[9] |
Woloshuk C, Seip E, Payne G, et al.Genetic transformation system for the aflatoxin-producing fungus Aspergillus flavus[J].Applied and Environmental Microbiology, 1989, 55(1):86-90.
|
[10] |
Sun W L, Chen Y P, Liu L X, et al.Conidia immobilization of T-DNA inserted Trichoderma atroviride mutant AMT-28 with dichlorvos degradation ability and exploration of biodegradation mechanism[J].Bioresource Technology, 2010, 101(23):9197-9203.
|
[11] |
Fu K H, Liu L X, Fan L L, et al.Accumulation of copper in Trichoderma reesei transformants, constructed with the modified Agrobacterium tumefaciens-mediated transformation technique[J].Biotechnology Letters, 2010, 32(12):1815-1820.
|
[12] |
Liu S W, Wang Z Y, Guo Z J.Isolation and transformation of Trichoderma viride protoplasts[J].Chinese Journal of Agricultural Biotechnology, 2004, 1(02):67-72.
|
[13] |
Zhou X Y, Xu S F, Liu L X, et al.Degradation of cyanide by Trichoderma mutants constructed by restriction enzyme mediated integration(REMI)[J].Bioresource Technology, 2007, 98(15):2958-2962.
|
[14] |
Huang Y Q, Liang C H, Chen J.Production and Regeneration of Trichoderma Strain T23 Protoplast[J].Journal of Jilin Agricultural University, 2007, 29(1):24-27.
|
[15] |
Tang J, Li Y Y, Fu K H, et al.Disruption of hex1 in Trichoderma atroviride leads to loss of Woronin body and decreased tolerance to dichlorvos[J].Biotechnology Letters, 2014, 36(4):751-759.
|
[16] |
孙文良, 胡晓璐, 吴萌章等.根癌农杆菌介导的深绿木霉菌T23遗传转化研究[J].上海交通大学学报(农业科学版), 2009, 27(5):489-493.
|
[16] |
Sun W L, Hu X L, Wu M Z, et al.Agrobacterium tumefaciens-mediated Transformation(ATMT)of Trichoderma atroviride T23[J].Journal of Shanghai Jiaotong University(Agricultural science), 2009, 27(5):489-493.
|
[1] |
YIN Han-jun, GU Yong-wei. Influence of Soil Liquefaction and Strength Degradation to Subsea Production System Foundation Under Seismically Induced Cyclic Shear Stress[J]. Ocean Engineering Equipment and Technology, 2018, 5(2): 125-128. |
[2] |
LI Shuo,CHEN Zhen,PAN Ershun. StepStress Accelerated Degradation Test Plan for Generalized Inverse Gaussian Process[J]. J. Shanghai Jiaotong Univ.(Sci.) , 2017, 51(2): 186-. |
[3] |
CHEN Zhen,PAN Ershun. A Bayesian Classification Policy for Highly Reliable Products Based on Degradation Data[J]. J. Shanghai Jiaotong Univ.(Sci.) , 2017, 51(1): 76-. |
[4] |
WU Feng1,2,WANG Dongdong2,SHI Beiling2,GONG Jinghai1,FU Kun2. Durability Degradation Analysis of Raymond Cylinder Pile[J]. J. Shanghai Jiaotong Univ.(Sci.) , 2016, 50(01): 158-164. |
[5] |
SUN Bo1* (孙 博), YE Tian-yuan1 (叶田园), FANG Yuan2 (方 园). A Novel Model of Failure Rate Prediction for Circular Electrical Connectors[J]. Journal of shanghai Jiaotong University (Science), 2015, 20(4): 472-476. |
[6] |
YUAN Rong1,2 (袁 容), LI Hai-qing2* (李海庆), HE Li-ping2 (何俐萍), GAO Hui-ying2 (高会英). Reliability Analysis for the Competing Failure with Probabilistic Failure Threshold Value and Its Application to the k-out-of-n Systems[J]. Journal of shanghai Jiaotong University (Science), 2015, 20(4): 500-507. |
[7] |
HUANG Wen-ping1 (黄文平), ZHOU Jing-lun1 (周经伦),NING Ju-hong2* (宁菊红), LIU Tian-yu1 (刘天宇). Optimal Burn-in and Preventive Maintenance Modeling with Competing Failure Processes[J]. Journal of shanghai Jiaotong University (Science), 2015, 20(3): 293-297. |
[8] |
YANG Chun-boa (阳纯波), ZENG Sheng-kuia,b (曾声奎), GUO Jian-bina,b* (郭健彬). Validation Metric of Degradation Model with Dynamic Performance[J]. Journal of shanghai Jiaotong University (Science), 2015, 20(3): 302-306. |
[9] |
ZUO Fang-jun (左芳君), ZHU Shun-peng (朱顺鹏), GAO Hui-ying (高会英),L¨U Zhi-qiang (吕志强), HUANG Hong-zhong* (黄洪钟). Stochastic Fatigue Life and Reliability Prediction Based on Residual Strength[J]. Journal of shanghai Jiaotong University (Science), 2015, 20(3): 331-337. |
[10] |
SI Xiaosheng1,HU Changhua1,LI Juan2,SUN Guoxi3,ZHANG Qi1. Remaining Useful Life Prediction of Nonlinear Stochastic Degrading Systems Subject to Uncertain Measurements[J]. J. Shanghai Jiaotong Univ.(Sci.) , 2015, 49(06): 855-860. |
[11] |
WANG Haoweia,XU Tingxuea,ZHOU Weib. Lifetime Prediction Method for Missile Electrical Connector Synthesizing Degradation Data and Lifetime Data[J]. J. Shanghai Jiaotong Univ.(Sci.) , 2014, 48(05): 702-706. |
[12] |
陶红玉,周炳海. Opportunistic Maintenance Model for Series Production Systems Based on Stochastic Degradations[J]. J. Shanghai Jiaotong Univ.(Sci.) , 2013, 47(12): 1911-1916. |
[13] |
SHI Xiaohui,CHEN Xiuhua,WANG Hai. Progressive Failure Analysis of Composite Laminates Based on Simplified Zinoviev Model[J]. J. Shanghai Jiaotong Univ.(Sci.) , 2013, 47(08): 1210-1216. |
[14] |
ZHU Guo-liang1,2 (祝国梁), XIAO Yan-ping1,3 (肖艳萍), YANG Yong-xiang1,3,4 (杨永祥). Degradation Behavior of Epoxy Resins in Fibre Metal Laminates
Under Thermal Conditions[J]. Journal of shanghai Jiaotong University (Science), 2012, 17(3): 257-262. |
[15] |
ZHANG Wei-1, PU Ying-Chao-2, TANG Wen-Yong-1, ZHANG Sheng-Kun-1. Longitudinal Ultimate Strength of Composite Ship Hull Considering Delamination Damage Mode[J]. J. Shanghai Jiaotong Univ.(Sci.) , 2012, 46(03): 394-397. |
|
|
|
|