组织工程与重建外科杂志 ›› 2025, Vol. 21 ›› Issue (6): 593-.

• • 上一篇    下一篇

基于3D皮肤模型的整形用注射填充物体外评价:动物实验替代的机会与挑战

  

  • 出版日期:2025-12-25 发布日期:2025-12-30

In vitro evaluation of injectable dermal fillers for plastic surgery based on 3D skin models:Opportunities and challenges of animal experiments as alternatives

  • Online:2025-12-25 Published:2025-12-30

摘要:

随着医疗美容行业的快速发展,整形用注射填充物的应用日益广泛,其安全性与有效性评价成为监管与研发关注的核心问题。当前相关生物学评价仍高度依赖动物实验,但动物皮肤在结构、生理功能等方面与人类存在显著差异,限制了其预测的准确性。在此背景下,3D皮肤模型作为更具人类生理相关性的体外系统,因其可重复性高、结构可控、伦理友好等优势,正被广泛探索用于替代动物实验。本文综述了3D皮肤模型的构建技术、组织结构特性,及其在整形注射填充剂生物学评价中的应用进展,重点分析其在生物相容性和功效评价方面的应用潜力,同时深入探讨了3D皮肤模型在结构完整性、细胞组成、评价适配性及加样方式等方面面临的挑战。最后,展望未来3D皮肤模型在组织工程、生物打印与微流控技术推动下的标准化与智能化发展趋势,以有助于进一步提升医疗美容材料体外评价的科学性与实用性。

关键词:

Abstract:

With the rapid development of the medical aesthetics industry, the application of injectable fillers for plastic

surgery has become increasingly widespread, and the evaluation of their safety and effectiveness has become the core focus of regulatory and research and development. Conventional biological assessments remain predominantly reliant on animal testing. However, substantial anatomical and physiological disparities between animal and human skin compromise translational accuracy. In response, three-dimensional (3D) skin models-offering enhanced physiological relevance, experimental reproducibility, and ethical acceptability-have emerged as promising in vitro alternatives. This review provides a comprehensive overview of the fabrication strategies, tissue architecture, and current progress of 3D skin models in the context of injectable filler evaluation. Emphasis is placed on their potential to assess biocompatibility and functional performance, as well as a comparative analysis of the inherent limitations of animal models. Moreover, key challenges associated with 3D skin models are critically examined, including structural incompleteness, restricted cellular heterogeneity, evaluation compatibility, and administration methodologies. Looking ahead, the integration of tissue engineering, bioprinting, and microfluidic technologies is anticipated to drive the standardization and in telligent evolution of these models ultimately advancing the scientific robustness and translational utility of in vitro testing systems for aesthetic biomaterials.

Key words: