Please wait a minute...
空天防御  2023, Vol. 6 Issue (3): 85-94    
0
  专业技术 本期目录 | 过刊浏览 | 高级检索 |
基于大数据推理的装备健康状态控制决策
郭璐1,2, 刘晓东2, 王玉峰1, 张振1
1. 江南机电设计研究所,贵州 贵阳 550009; 2.空军工程大学 装备管理与无人机工程学院,陕西 西安 710051
Control Decision of Equipment Health State based on Big Data Reasoning
GUO Lu1,2, LIU Xiaodong2, WANG Yufeng1, ZHANG Zhen1
1. Jiangnan Institute of Mechanical and Electrical Design, Guiyang 550009, Guizhou, China; 2. School of Equipment Management and UAV Engineering, Air Force Engineering University, Xi'an 710051, Shaanxi, China
全文: PDF(2730 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对武器装备健康状态精确控制的需求,提出了基于大数据综合推理的武器装备健康状态控制决策方法。首先,对武器装备全寿命周期数据进行采集与处理,形成以武器装备健康状态为特征属性之一的知识库;其次,根据武器装备健康状态动态控制流程,提出综合案例库推理和规则库推理的机制;再次,采用K近邻算法计算相似度进行案例推理和采用事实特征集合匹配进行规则推理,并不断形成新知识;最后,以某型武器装备液压系统为例,根据其健康监测及其他属性特征数据推理出控制策略。仿真结果表明:融合大数据的综合推理方法能提供与武器装备健康状态相适应的精细且准确的动态控制决策,可为实现武器装备健康状态精确管理提供有力支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 大数据健康状态控制决策综合推理    
Abstract:To acquire precise control of weaponry and equipment health state, a decisive control method is proposed using comprehensive reasoning of big data. First, the whole life cycle data of weaponry and equipment was collected and processed to form knowledge as one of the characteristic attributes. Then, according to the dynamic control flow of weaponry and equipment health state, a mechanism of an integrated case using reasoning and rule base reasoning was proposed. Thirdly, the k-nearest neighbour algorithm is used to calculate similarity for case-based reasoning, and fact feature set matching was used for rule reasoning where new knowledge was constantly formed. Finally, taking the hydraulic system of a certain weapon as a case study, the control strategy was deduced from its health monitoring and other attribute data. The simulation results show that the integrated intelligent reasoning method integrated with big data can generate precise and accurate dynamic control decisions adapted to the health state of weaponry and equipment, and can effectively support the accurate management of the health state of weaponry and equipment.
Key wordsbig data    health state    control decision    comprehensive reasoning
收稿日期: 2022-10-12      出版日期: 2023-09-28
ZTFLH:  TP 391  
基金资助:国防基础科研项目(JCKY2017204A011)
作者简介: 郭璐(1991—),女,博士研究生,高级工程师,主要研究方向为武器装备综合保障设计。
引用本文:   
郭璐, 刘晓东, 王玉峰, 张振. 基于大数据推理的装备健康状态控制决策[J]. 空天防御, 2023, 6(3): 85-94.
GUO Lu, LIU Xiaodong, WANG Yufeng, ZHANG Zhen. Control Decision of Equipment Health State based on Big Data Reasoning. Air & Space Defense, 2023, 6(3): 85-94.
链接本文:  
https://www.qk.sjtu.edu.cn/ktfy/CN/      或      https://www.qk.sjtu.edu.cn/ktfy/CN/Y2023/V6/I3/85

参考文献
[1] 徐宏东, 高海波, 徐晓滨, 林治国, 盛晨兴. 基于证据推理规则CS-SVR模型的锂离子电池SOH估算[J]. 上海交通大学学报, 2022, 56(4): 413-421.
[2] 卢地华, 陈自强. 基于双充电状态的锂离子电池健康状态估计[J]. 上海交通大学学报, 2022, 56(3): 342-352.
[3] 郭璐, 毛勇, 姚会举. 面向装备综合保障设计的大数据系统研究[J]. 空天防御, 2019, 2(1): 70-75.
[4] 宋人杰1,余通1,陈宇红2,陈宇阳2,夏滨2. 基于MapReduce模型的大数据相似重复记录检测算法[J]. 上海交通大学学报(自然版), 2018, 52(2): 214-221.
沪ICP备15013849号-1
版权所有 © 2017《空天防御》编辑部
主管单位:中国航天科技集团有限公司 主办单位:上海机电工程研究所 上海交通大学出版社有限公司