Please wait a minute...
空天防御  2024, Vol. 7 Issue (3): 86-93    
0
  专业技术 本期目录 | 过刊浏览 | 高级检索 |
多弹集群协同优化决策算法研究
熊婧伊1, 呼卫军1, 殷玮2, 张伟杰1, 颜涛2
1. 西北工业大学 航天学院, 陕西 西安 710072; 2. 上海机电工程研究所, 上海 201109
Research on Collaborative Optimization Decision Algorithm for Multi-Missile Clusters
XIONG Jingyi1, HU Weijun1, YIN Wei2, ZHANG Weijie1, YANTao2
1. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China; 2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China
全文: PDF(1450 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 本文以集群对海作战为应用背景,为重点解决多弹多空间散布的时空构型及目标分配决策问题,建立了多弹典型协同场景下的导弹主动感知协同探测模型,设计了导弹协同探测与协同攻击的模型以及相应的算法。首先,建立了导弹三自由度和舰船二自由度模型、导弹飞行能力评估模型、导弹突防概率评估模型和导弹威胁度评估模型,使得对导弹执行探测和打击任务中能力的变化度量更加精确。其次,设计导弹在不完全信息条件下的主动感知协同探测模型和协同攻击模型,保证导弹协同作战的效益最大化,最大限度地打击敌方势力。再次,针对导弹协同打击目标分配和导弹编队构型问题,使用融合了遗传算法的粒子群(GAPSO)算法问题进行求解,并与传统的粒子群(PSO)算法进行了对比,实现了多方位考虑战场态势信息,对敌方目标进行探测攻击一体化打击。最后,对建立的作战模型进行仿真,得到算法仿真图和算法多次仿真的统计数据。相比其他算法,该算法具有一定的优越性,大幅提升了导弹的智能化对抗水平和突防打击能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 导弹集群决策多弹协同主动感知粒子群遗传粒子群    
Abstract:Taking cluster-to-sea combat as the application background, this article focuses on the spatiotemporal configuration and target allocation decision-making problems of multi-missile and multi-spatial dispersion. It established a missile active perception collaborative detection model in typical collaborative scenarios of multiple missiles and designed models and corresponding algorithms for missile cooperative detection and collaborative attacks. Initially, a three-degree-freedom model for missiles and a two-degree-freedom model for ships, an evaluation model for missile flight capability, an evaluation model for missile penetration probability, and a missile threat evaluation model were established, thus allowing the accurate measurements of changes in missile detection and strike capabilities. Then, this study designed an active perception collaborative detection model and collaborative attack model for missiles under incomplete information conditions, maximizing the benefits of missile collaborative operations and maximizing the destruction of enemy forces. After that, to address the problems of target allocation and missile formation configuration in missile coordinated strike, a particle swarm optimization algorithm incorporating a genetic algorithms (GAPSO) was introduced and compared with the traditional particle swarm optimization (PSO) algorithms, which allows a multi- dimensional consideration of battlefield situation information and integrated detection and attack of enemy targets. Finally, this article simulated the established combat model and obtained algorithm simulation graphs and statistical data from multiple simulations of the algorithm. Compared with other algorithms, this algorithm has obvious advantages, thus significantly improving the intelligent confrontation level and penetration strike ability of missiles.
Key wordsmissile cluster decision-making    multi-missile cooperation    active perception    particle swarm optimization (PSO)    genetic algorithms particle swarm optimization(GAPSO)
收稿日期: 2023-10-16      出版日期: 2024-07-25
:  V 249  
  TP 273  
基金资助:国家自然科学基金联合基金(U23B2064)
作者简介: 熊婧伊(2000—),女,硕士研究生。
引用本文:   
熊婧伊, 呼卫军, 殷玮, 张伟杰, 颜涛. 多弹集群协同优化决策算法研究[J]. 空天防御, 2024, 7(3): 86-93.
XIONG Jingyi, HU Weijun, YIN Wei, ZHANG Weijie, YANTao. Research on Collaborative Optimization Decision Algorithm for Multi-Missile Clusters. Air & Space Defense, 2024, 7(3): 86-93.
链接本文:  
https://www.qk.sjtu.edu.cn/ktfy/CN/      或      https://www.qk.sjtu.edu.cn/ktfy/CN/Y2024/V7/I3/86

参考文献
[1] 冯振欣, 赵斌, 贾世伟, 顾嘉耀, 郑天宇, 卢青. 大气层外动能拦截器制导控制技术研究进展与展望[J]. 空天防御, 2024, 7(2): 22-28.
[2] 董德金, 范云锋, 蔡云泽. 一种具有必经点约束的非结构化环境路径规划方法[J]. 空天防御, 2024, 7(1): 71-80.
[3] 苏山, 谢永杰, 白瑜亮, 刘印田, 单永志. 微分对策协同对抗制导律方法研究[J]. 空天防御, 2022, 5(2): 58-64.
沪ICP备15013849号-1
版权所有 © 2017《空天防御》编辑部
主管单位:中国航天科技集团有限公司 主办单位:上海机电工程研究所 上海交通大学出版社有限公司