Please wait a minute...
空天防御  2024, Vol. 7 Issue (4): 7-17    
0
  专家特稿 本期目录 | 过刊浏览 | 高级检索 |
面向宽域飞行平台的涡轮增强组合动力总体性能分析
何国强1, 秦飞1, 魏祥庚1, 张铎1, 玉选斐1, 魏黎明2
1. 西北工业大学 固体推进全国重点实验室,陕西 西安 710072; 2. 上海机电工程研究所,上海 201109
Overall Performance Analysis of Combined Cycle Based on Turbine Augmented for Wide-Range Aviation Platforms
HE Guoqiang1, QIN Fei1, WEI Xianggeng1, ZHANG Duo1, YU Xuanfei1, WEI Liming1
1. National Key Laboratory of Solid Rocket Propulsion, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China; 2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China
全文: PDF(3492 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 面向宽域飞行平台的动力需求,提出了兼顾加速性与燃油经济性的新型涡轮增强组合动力方案,并从发动机组成与工作原理的角度阐明了采用串联式流道方案实现高加速能力与高比冲性能的可行性。首先,基于自主开发的性能评估模型,对发动机涡轮增压模式和冲压模式宽域性能进行预估,并通过整机三维数值模拟对典型工作点发动机性能进行计算。在采用液氧/甲烷推进剂时,马赫数为0~3的涡轮增压模式可实现800~1 000 s的比冲和145 s的最大比推力;在当量比1.0的冲压模式下,马赫数为4时可实现1 300 s以上的比冲,马赫数为6时可实现1 000 s以上的比冲。其次,以该组合动力方案作为两级入轨第一级飞行器动力,开展两级入轨任务的总体方案初步论证,结果表明该组合动力方案具备优异的宽域加速能力,能够支撑高效的可重复使用航天运输任务。该组合动力还可以作为覆盖亚声速到高超声速范围的宽域机载无人平台动力,实现自主加速和超高速巡航。最后,对发动机研制面临的主要关键技术进行了梳理和总结。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 宽域飞行平台组合动力高超声速总体性能    
Abstract:According to the power requirements of wide-ranged aviation platforms, a new turbine-augmented combined cycle engine which balances acceleration and fuel economy was proposed in this study. The feasibility of achieving high acceleration and high specific impulse performance using a series connected configuration was initially clarified concerning both engine components and working principles. Firstly, wide-ranged performance of turbine-augmented mode and ramjet mode was assessed using the self-developed performance evaluation model. After that, three-dimensional simulations of typical flight conditions were conducted to ensure the accuracy of the self-developed model. Then, based on the calculations, the engine fueled by liquid oxygen (LO2) and liquid methane (LCH4) reached a specific impulse of approximately 800~1 000 s with a maximum specific thrust of 145 s when working with Mach 0 to 3. Besides, when working at ramjet mode with an equivalence ratio of 1.0, a specific impulse of more than 1 300 s was reached in a Ma4 flight condition and more than 1 000 s in Ma6. Secondly, a preliminary demonstration of the two-stage-to-orbit (TSTO) Astro vehicle based on the turbine-augmented combined cycle engine was carried out. The results have shown the previously mentioned engine can manage high-efficiency reusable space transportation missions with its outstanding wide-ranged acceleration performance. The combined cycle engine was also applicable in the propulsion system for wide-range airborne unmanned platforms covering subsonic to hypersonic speeds, enabling autonomous acceleration and ultra-high-speed cruise. Finally, critical technologies for engine manufacturing were sorted out and summarized.
Key wordswide-range aviation platform    combined cycle engine    hypersonic    overall performance
收稿日期: 2024-01-29      出版日期: 2024-09-10
ZTFLH:  V 52  
基金资助:陕西省自然科学基础研究计划(021JC-14)
作者简介: 何国强(1962—),男,博士,教授。
引用本文:   
何国强, 秦飞, 魏祥庚, 张铎, 玉选斐, 魏黎明. 面向宽域飞行平台的涡轮增强组合动力总体性能分析[J]. 空天防御, 2024, 7(4): 7-17.
HE Guoqiang, QIN Fei, WEI Xianggeng, ZHANG Duo, YU Xuanfei, WEI Liming. Overall Performance Analysis of Combined Cycle Based on Turbine Augmented for Wide-Range Aviation Platforms. Air & Space Defense, 2024, 7(4): 7-17.
链接本文:  
https://www.qk.sjtu.edu.cn/ktfy/CN/      或      https://www.qk.sjtu.edu.cn/ktfy/CN/Y2024/V7/I4/7

参考文献
[1] 粟华, 施振兴, 丁轩鹤, 张亚云, 龚春林. 高超声速飞行器多物理场虚拟飞行建模方法研[J]. 空天防御, 2024, 7(5): 45-53.
[2] 臧红岩, 谢晓龙, 徐亚周, 陶业, 高长生. 基于循环神经网络的高超声速机动目标状态估计算法[J]. 空天防御, 2024, 7(4): 88-98.
[3] 李勇, 张顺家, 朱玉虎, 孔晓俊, 杜泽弘. 2023年美俄典型机载导弹发展动态与趋势分析[J]. 空天防御, 2024, 7(4): 30-37.
[4] 刘政卓, 王伟, 张勃, 贺祥, 闫杰. 基于解析解的高超声速滑翔飞行器的机动弹道设计[J]. 空天防御, 2024, 7(3): 102-110.
[5] 阎宏磊, 陆远, 郭杰, 唐胜景, 李响. 欠驱动高超滑翔飞行器集群协同编队控制方法[J]. 空天防御, 2024, 7(1): 56-62.
[6] 林照晨, 张欣然, 刘紫阳, 贺风华, 欧阳磊. 基于深度学习的高超声速飞行器运动行为识别[J]. 空天防御, 2024, 7(1): 48-55.
[7] 狄子琦, 王翔宇, 吴双, 周宇 . 基于Transformer架构的高超声速飞行器轨迹生成与预测算法[J]. 空天防御, 2023, 6(4): 35-41.
[8] 刘双喜, 刘世俊, 李勇, 闫斌斌, 闫杰. 国外高超声速飞行器及防御体系发展现状[J]. 空天防御, 2023, 6(3): 39-51.
[9] 荣臻, 胡文杰, 邱云龙, 张玉剑, 王亦庄, 江中正, 陈伟芳. Φ120高超声速风洞流场校测[J]. 空天防御, 2022, 5(3): 58-64.
[10] 田若岑, 张庆振, 郭云鹤, 程林. 基于禁飞区规避的高超声速飞行器再入制导律设计[J]. 空天防御, 2022, 5(2): 65-74.
[11] 刘双喜, 王一冲, 朱梦杰, 李勇, 闫斌斌. 小弹目速度比下拦截高超声速飞行器微分对策制导律研究[J]. 空天防御, 2022, 5(2): 49-57.
[12] 易仕和, 丁浩林. 适用高超声速飞行环境的超声速气膜冷却光学窗口研究进展[J]. 空天防御, 2021, 4(4): 1-13.
[13] 熊俊辉, 李克勇, 刘燚, 吉雨. 临近空间防御技术发展态势及突防策略[J]. 空天防御, 2021, 4(2): 82-.
[14] 魏黎明, 李晓龙, 赵征, 杜厦, 汪九州.  神经网络在吸气式高超声速导弹突防弹道设计上的应用[J]. 空天防御, 2018, 1(2): 14-17.
[15] 柳军, 符翔, 王晓燕. 一种半径可控的参数化三维前缘钝化设计方法研究[J]. 空天防御, 2018, 1(1): 18-24.
沪ICP备15013849号-1
版权所有 © 2017《空天防御》编辑部
主管单位:中国航天科技集团有限公司 主办单位:上海机电工程研究所 上海交通大学出版社有限公司