1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People’s Republic of China 2 National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People’s Republic of China 3 Guangdong Province Key Laboratory of Display Material and Technology, Guangzhou, 510275, People’s Republic of China 4 China Academy of Aerospace Science and Innovation, Beijing, 100176, People’s Republic of China 5 School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, People’s Republic of China 6 GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou, 510700, People’s Republic of China 7 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China 8 Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, 510700, People’s Republic of China
With the increasing demand for terahertz (THz) technology in security inspection, medical imaging, and flexible electronics, there is a significant need for stretchable and transparent THz electromagnetic interference (EMI) shielding materials. Existing EMI shielding materials, like opaque metals and carbon-based films, face challenges in achieving both high transparency and high shielding efficiency (SE). Here, a wrinkled structure strategy was proposed to construct ultra-thin, stretchable, and transparent terahertz shielding MXene films, which possesses both isotropous wrinkles (height about 50 nm) and periodic wrinkles (height about 500 nm). Compared to flat film, the wrinkled MXene film (8 nm) demonstrates a remarkable 36.5% increase in SE within the THz band. The wrinkled MXene film exhibits an EMI SE of 21.1 dB at the thickness of 100 nm, and an average EMI SE/t of 700 dB μm−1 over the 0.1-10 THz. Theoretical calculations suggest that the wrinkled structure enhances the film's conductivity and surface plasmon resonances, resulting in an improved THz wave absorption. Additionally, the wrinkled structure enhances the MXene films' stretchability and stability. After bending and stretching (at 30% strain) cycles, the average THz transmittance of the wrinkled film is only 0.5% and 2.4%, respectively. The outstanding performances of the wrinkled MXene film make it a promising THz electromagnetic shielding materials for future smart windows and wearable electronics.
M. SamizadehNikoo, E.Matioli, Electronic metadevices for terahertz applications. Nature614, 451-455 (2023).
2.
V.Pistore, H.Nong, P.-B.Vigneron, K.Garrasi, S.Houver et al., Millimeter wave photonics with terahertz semiconductor lasers. 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). Chengdu, China. IEEE, (2021), pp1.
3.
L.Luo, I.Chatzakis, J.Wang, F.B.P.Niesler, M.Wegener et al., Broadband terahertz generation from metamaterials. Nat. Commun. 5, 3055 (2014).
4.
D.Suzuki, S.Oda, Y.Kawano, A flexible and wearable terahertz scanner. Nat. Photonics10, 809-813 (2016).
5.
Y.Yu, P.Yi, W.Xu, X.Sun, G.Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022).
6.
Z.H.Zeng, N.Wu, J.J.Wei, Y.F.Yang, T.T.Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022).
7.
B.Shi, P.Wang, J.Feng, C.Xue, G.Yang et al., Split-ring structured all-inorganic perovskite photodetector arrays for masterly Internet of Things. Nano-Micro Lett. 15, 3 (2022).
M.Manjappa, A.Solanki, A.Kumar, T.C.Sum, R.Singh, Solution-processed lead iodide for ultrafast all-optical switching of terahertz photonic devices. Adv. Mater. 31, e1901455 (2019).
10.
A.G.Markelz, D.M.Mittleman, Perspective on terahertz applications in bioscience and biotechnology. ACS Photonics9, 1117-1126 (2022).
11.
M.Chen, Y.Wang, Z.Zhao, Monolithic metamaterial-integrated graphene terahertz photodetector with wavelength and polarization selectivity. ACS Nano16, 17263-17273 (2022).
12.
Y.Ghasempour, R.Shrestha, A.Charous, E.Knightly, D.M.Mittleman, Single-shot link discovery for terahertz wireless networks. Nat. Commun. 11, 2017 (2020).
13.
R.Yang, X.Gui, L.Yao, Q.Hu, L.Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021).
14.
R.B.Schulz, V.C.Plantz, D.R.Brush, Shielding theory and practice. IEEE Trans. Electromagn. Compat. 30, 187-201 (1988).
15.
N. vanHoof, M.Parente, A.Baldi, J.G.Rivas, Terahertz time-domain spectroscopy and near-field microscopy of transparent silver nanowire networks. Adv. Opt. Mater. 8, 1900790 (2020).
16.
S.Hou, W.Ma, G.Li, Y.Zhang, Y.Ji et al., Excellent Terahertz shielding performance of ultrathin flexible Cu/graphene nanolayered composites with high stability. J. Mater. Sci. Technol. 52, 136-144 (2020).
17.
B.Zhao, Z.Bai, H.Lv, Z.Yan, Y.Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15, 79 (2023).
18.
H.Duan, H.Zhu, J.Gao, D.-X.Yan, K.Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A8, 9146-9159 (2020).
19.
J.Bang, J.Ahn, J.Zhang, T.H.Ko, B.Park et al., Stretchable and directly patternable double-layer structure electrodes with complete coverage. ACS Nano16, 12134-12144 (2022).
20.
S.Park, J.Bang, B.-S.Kim, S.J.Oh, J.-H.Choi, Metallic fusion of nanocrystal thin films for flexible and high-performance electromagnetic interference shielding materials. Mater. Today Adv.12, 100177 (2021).
21.
Y.I.Jhon, J.H.Lee, Y.M.Jhon, Surface termination effects on the terahertz-range optical responses of two-dimensional MXenes: density functional theory study. Mater. Today Commun. 32, 103917 (2022).
22.
L.-X.Liu, W.Chen, H.-B.Zhang, L.Ye, Z.Wang et al., Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022).
23.
J.Wang, X.Ma, J.Zhou, F.Du, C.Teng, Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano16, 6700-6711 (2022).
H.Wan, N.Liu, J.Tang, Q.Wen, X.Xiao, Substrate-independent Ti3C2Tx MXene waterborne paint for terahertz absorption and shielding. ACS Nano15, 13646-13652 (2021).
26.
T.Zhao, P.Xie, H.Wan, T.Ding, M.Liu et al., Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5-10 THz band. Nat. Photonics17, 622-628 (2023).
27.
V.Mauchamp, M.Bugnet, E.P.Bellido, G.A.Botton, P.Moreau et al., Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: electronic structure versus boundary effects. Phys. Rev. B89, 235428 (2014).
28.
Q.Zou, W.Guo, L.Zhang, L.Yang, Z.Zhao et al., MXene-based ultra-thin film for terahertz radiation shielding. Nanotechnology31, 505710 (2020).
29.
A.Iqbal, P.Sambyal, C.M.Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020).
30.
T.Yun, H.Kim, A.Iqbal, Y.S.Cho, G.S.Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, e1906769 (2020).
31.
J.T.Hong, D.J.Park, J.Y.Moon, S.B.Choi, J.K.Park et al., Terahertz wave applications of single-walled carbon nanotube films with high shielding effectiveness. Appl. Phys. Express5, 015102 (2012).
32.
G.Li, N.Amer, H.A.Hafez, S.Huang, D.Turchinovich et al., Dynamical control over terahertz electromagnetic interference shielding with 2D Ti3C2Ty MXene by ultrafast optical pulses. Nano Lett. 20, 636-643 (2020).
33.
G.Choi, F.Shahzad, Y.-M.Bahk, Y.M.Jhon, H.Park et al., Enhanced terahertz shielding of MXenes with nano-metamaterials. Adv. Opt. Mater. 6, 1701076 (2018).
34.
B.Zhao, Y.Du, Z.Yan, L.Rao, G.Chen et al., Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33, 2209924 (2023).
35.
Y.Du, Z.Yan, W.You, Q.Men, G.Chen et al., Balancing MXene surface termination and interlayer spacing enables superior microwave absorption. Adv. Funct. Mater. 33, 2301449 (2023).
36.
B.Zhao, Z.Yan, Y.Du, L.Rao, G.Chen et al., High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 35, e2210243 (2023).
37.
J.Li, H.Sun, S.-Q.Yi, K.-K.Zou, D.Zhang et al., Flexible polydimethylsiloxane composite with multi-scale conductive network for ultra-strong electromagnetic interference protection. Nano-Micro Lett. 15, 15 (2022).
38.
Z.Zhang, S.Yang, P.Zhang, J.Zhang, G.Chen et al., Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10, 2920 (2019).
39.
R.Yang, H.Song, Z.Zhou, S.Yang, X.Tang et al., Ultra-sensitive, multi-directional flexible strain sensors based on an MXene film with periodic wrinkles. ACS Appl. Mater. Interfaces15, 8345-8354 (2023).
40.
S.Yang, R.Yang, Z.Lin, X.Wang, S.Liu et al., Ultrathin, flexible, and high-strength polypyrrole/Ti3C2Tx film for wide-band gigahertz and terahertz electromagnetic interference shielding. J. Mater. Chem. A10, 23570-23579 (2022).
41.
A.Javili, A.D.Bakiler, A displacement-based approach to geometric instabilities of a film on a substrate. Math. Mech. Solids24, 2999-3023 (2019).
42.
B.Zhao, C.B.Park, Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. J. Mater. Chem. C5, 6954-6961 (2017).
43.
Z.Huang, H.Chen, S.Xu, L.Y.Chen, Y.Huang et al., Graphene-based composites combining both excellent terahertz shielding and stealth performance. Adv. Opt. Mater. 6, 1801165 (2018).
44.
A.Iqbal, F.Shahzad, K.Hantanasirisakul, M.K.Kim, J.Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene). Science369, 446-450 (2020).
45.
F.Shahzad, M.Alhabeb, C.B.Hatter, B.Anasori, S. ManHong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science353, 1137-1140 (2016).
C.Pavlou, M.G. PastoreCarbone, A.C.Manikas, G.Trakakis, C.Koral et al., Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 12, 4655 (2021).
50.
J.H.Yim, M.A.Seo, Y.H.Ahn, F.Rotermund, D.S.Kim et al., Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films. 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves. Pasadena, CA, USA. IEEE, (2008), pp1.
51.
A.Sarycheva, A.Polemi, Y.Liu, K.Dandekar, B.Anasori et al., 2D titanium carbide (MXene) for wireless communication. Sci. Adv.4, eaau0920 (2018).
52.
M.M.Hasan, M.M.Hossain, H.K.Chowdhury, Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. J. Mater. Chem. A9, 3231-3269 (2021).
53.
X.Guo, N.Li, C.Wu, X.Dai, R.Qi et al., Studying plasmon dispersion of MXene for enhanced electromagnetic absorption. Adv. Mater. 34, e2201120 (2022).