|
|
Boosting Hydrogen Storage Performance of MgH2 by Oxygen Vacancy-Rich H-V2O5 Nanosheet as an Excited H-Pump |
Li Ren1,2,3, Yinghui Li1,2,3, Zi Li1,2,3, Xi Lin1,2,3, Chong Lu4, Wenjiang Ding1,2,3, Jianxin Zou1,2,3( ) |
1 National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China 2 Shanghai Engineering Research Center of Mg Materials and Applications & School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China 3 Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China 4 Instrumental Analysis Center of SJTU, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China |
|
|
Abstract MgH2 is a promising high-capacity solid-state hydrogen storage material, while its application is greatly hindered by the high desorption temperature and sluggish kinetics. Herein, intertwined 2D oxygen vacancy-rich V2O5 nanosheets (H-V2O5) are specifically designed and used as catalysts to improve the hydrogen storage properties of MgH2. The as-prepared MgH2-H-V2O5 composites exhibit low desorption temperatures (Tonset = 185 °C) with a hydrogen capacity of 6.54 wt%, fast kinetics (Ea = 84.55 ± 1.37 kJ mol−1 H2 for desorption), and long cycling stability. Impressively, hydrogen absorption can be achieved at a temperature as low as 30 °C with a capacity of 2.38 wt% within 60 min. Moreover, the composites maintain a capacity retention rate of ~ 99% after 100 cycles at 275 °C. Experimental studies and theoretical calculations demonstrate that the in-situ formed VH2/V catalysts, unique 2D structure of H-V2O5 nanosheets, and abundant oxygen vacancies positively contribute to the improved hydrogen sorption properties. Notably, the existence of oxygen vacancies plays a double role, which could not only directly accelerate the hydrogen ab/de-sorption rate of MgH2, but also indirectly affect the activity of the catalytic phase VH2/V, thereby further boosting the hydrogen storage performance of MgH2. This work highlights an oxygen vacancy excited “hydrogen pump” effect of VH2/V on the hydrogen sorption of Mg/MgH2. The strategy developed here may pave a new way toward the development of oxygen vacancy-rich transition metal oxides catalyzed hydride systems.
|
Received: 04 December 2023
Published: 21 March 2024
|
Corresponding Authors:
Jianxin Zou
|
|
|
|
|
Fig. 1 a Schematic illustration of the synthetic process of the H-V2O5 nanosheets. Typical SEM images of b, c pristine V2O5·xH2O and d, e H-V2O5 nanosheets. f Typical TEM and HRTEM images of pristine V2O5·xH2O nanosheets. g HAADF image and the corresponding elemental mapping of pristine V2O5·xH2O nanosheets. h Typical TEM image of H-V2O5 nanosheets
|
|
Fig. 2 a XRD patterns of V2O5 nanosheets with different states. (The enlarged image shows the peak shift observed from different samples.) b N2 ad/de-sorption isotherms and corresponding specific surface areas of V2O5·xH2O and commercial V2O5. c High-resolution V 2p XPS spectra acquired from the V2O5·xH2O, V2O5-350air, and H-V2O5-300. d TG curve of H-V2O5-300 in air. e Raman spectra obtained from different samples
|
|
Fig. 3 a TPD results of H-V2O5-doped MgH2 samples and pristine MgH2-BM. b DSC curves of MgH2 doped with different catalysts and c MgH2-10 wt% H-V2O5 with different heating rates. d Isothermal H2 absorption curves of MgH2-10 wt% H-V2O5 at various temperatures. e Isothermal H2 desorption curves of MgH2-10 wt% H-V2O5 at various temperatures (including the desorption curves of pristine MgH2-BM at 275 °C for comparison)
|
|
Fig. 4 a The extent of reaction curves of MgH2-10 wt% H-V2O5 composites at 225, 250, and 275 °C. b (t/t0.5)theo vs. (t/t0.5)exp of composites at 225 °C for various kinetic models. c Time dependence of kinetic modeling equations g(α) for composites with 0.2 < α < 0.7 at different temperatures. d Calculation of the apparent activation energies according to the Arrhenius equation
|
|
Fig. 5 a De/re-hydrogenation cycle curves of MgH2-10 wt% H-V2O5. b TPD results of MgH2-10 wt% H-V2O5 upon cycling
|
|
Fig. 6 a XRD patterns and b high-resolution V 2p XPS spectra of MgH2 under the catalysis of H-V2O5 nanosheets at various states
|
|
Fig. 7 a-c The typical bright field TEM images, the HAADF images, the corresponding elemental mapping, and d-f the relative HRTEM images of MgH2-H-V2O5 composites at various states (The inset in a-c shows the corresponding SAED patterns)
|
|
Fig. 8 Schematic illustration of the H2 desorption process of a MgH2 on the V2O5 (001) plane and b MgH2 on the V2O5-x (001) plane. Calculated energy profiles for the c H2 desorption and d absorption of MgH2
|
|
Fig. 9 DOS of the a MgH2-V2O5/V2O5-x system and b VH2-V2O5/V2O5-x system
|
|
Fig. 10 Schematic diagram showing the mechanisms of enhanced hydrogen storage performances of the MgH2-H-V2O5 composites
|
1. | Z. Abdin, A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński et al., Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 120, 109620 (2020). | 2. | I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds et al., The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463-491 (2019). | 3. | T. Capurso, M. Stefanizzi, M. Torresi, S.M. Camporeale, Perspective of the role of hydrogen in the 21st century energy transition. Energy Convers. Manag. 251, 114898 (2022). | 4. | N. Mac Dowell, N. Sunny, N. Brandon, H. Herzog, A.Y. Ku et al., The hydrogen economy: a pragmatic path forward. Joule 5, 2524-2529 (2021). | 5. | O. Faye, J. Szpunar, U. Eduok, A critical review on the current technologies for the generation, storage, and transportation of hydrogen. Int. J. Hydrog. Energy 47, 13771-13802 (2022). | 6. | M. van der Spek, C. Banet, C. Bauer, P. Gabrielli, W. Goldthorpe et al., Perspective on the hydrogen economy as a pathway to reach net-zero CO2 emissions in Europe. Energy Environ. Sci 15, 1034-1077 (2022). | 7. | A.I. Osman, N. Mehta, A.M. Elgarahy, M. Hefny, A. Al-Hinai et al., Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. 20, 153-188 (2022). | 8. | G. Nazir, A. Rehman, S. Hussain, S. Aftab, K. Heo et al., Recent advances and reliable assessment of solid-state materials for hydrogen storage: a step forward toward a sustainable H2 economy. Adv. Sustain. Syst. 6, 2200276 (2022). | 9. | L. Ren, Y. Li, N. Zhang, Z. Li, X. Lin et al., Nanostructuring of Mg-based hydrogen storage materials: recent advances for promoting key applications. Nano-Micro Lett. 15, 93 (2023). | 10. | V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov et al., Magnesium based materials for hydrogen based energy storage: past, present and future. Int. J. Hydrog. Energy 44, 7809-7859 (2019). | 11. | M. Song, L. Zhang, F. Wu, H. Zhang, H. Zhao et al., Recent advances of magnesium hydride as an energy storage material. J. Mater. Sci. Technol. 149, 99-111 (2023). | 12. | L. Ren, Y. Li, X. Lin, W. Ding, J. Zou, Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems. Front. Energy 17, 320-323 (2023). | 13. | Z.-Y. Li, Y.-J. Sun, C.-C. Zhang, S. Wei, L. Zhao et al., Optimizing hydrogen ad/desorption of Mg-based hydrides for energy-storage applications. J. Mater. Sci. Technol. 141, 221-235 (2023). | 14. | Y. Luo, Q. Wang, J. Li, F. Xu, L. Sun et al., Enhanced hydrogen storage/sensing of metal hydrides by nanomodification. Mater. Today Nano 9, 100071 (2020). | 15. | M. Rueda, L.M. Sanz-Moral, Á. Martín, Innovative methods to enhance the properties of solid hydrogen storage materials based on hydrides through nanoconfinement: a review. J. Supercrit. Fluids 141, 198-217 (2018). | 16. | F. Guo, T. Zhang, L. Shi, L. Song, Hydrogen absorption/desorption cycling performance of Mg-based alloys with in situ formed Mg2Ni and LaH (x=2, 3) nanocrystallines. J. Magnes. Alloys 11, 1180-1192 (2023). | 17. | X. Ding, R. Chen, X. Chen, H. Fang, Q. Wang et al., A novel method towards improving the hydrogen storage properties of hypoeutectic Mg-Ni alloy via ultrasonic treatment. J. Magnes. Alloys 11, 903-915 (2023). | 18. | S.T. Kelly, S.L. Van Atta, J.J. Vajo, G.L. Olson, B.M. Clemens, Kinetic limitations of the Mg2Si system for reversible hydrogen storage. Nanotechnology 20, 204017 (2009). | 19. | W.J. Botta, G. Zepon, T.T. Ishikawa, D.R. Leiva, Metallurgical processing of Mg alloys and MgH2 for hydrogen storage. J. Alloys Compd. 897, 162798 (2022). | 20. | Z. Ding, Y. Li, H. Yang, Y. Lu, J. Tan et al., Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis. J. Magnes. Alloys 10, 2946-2967 (2022). | 21. | X. Ding, R. Chen, J. Zhang, W. Cao, Y. Su et al., Recent progress on enhancing the hydrogen storage properties of Mg-based materials via fabricating nanostructures: a critical review. J. Alloys Compd. 897, 163137 (2022). | 22. | X. Xie, M. Chen, M. Hu, B. Wang, R. Yu et al., Recent advances in magnesium-based hydrogen storage materials with multiple catalysts. Int. J. Hydrog. Energy 44, 10694-10712 (2019). | 23. | Y. Meng, J. Zhang, S. Ju, Y. Yang, Z. Li et al., Understanding and unlocking the role of V in boosting the reversible hydrogen storage performance of MgH2. J. Mater. Chem. A 11, 9762-9771 (2023). | 24. | Y. Meng, S. Ju, W. Chen, X. Chen, G. Xia et al., Design of bifunctional Nb/V interfaces for improving reversible hydrogen storage performance of MgH2. Small Struct. 3, 2270030 (2022). | 25. | Z. Lan, X. Wen, L. Zeng, Z. Luo, H. Liang et al., In situ incorporation of highly dispersed nickel and vanadium trioxide nanoparticles in nanoporous carbon for the hydrogen storage performance enhancement of magnesium hydride. Chem. Eng. J. 446, 137261 (2022). | 26. | J. Zang, S. Wang, R. Hu, H. Man, J. Zhang et al., Ni, beyond thermodynamic tuning, maintains the catalytic activity of V species in Ni3(VO4)2 doped MgH2. J. Mater. Chem. A 9, 8341-8349 (2021). | 27. | J. Cui, J. Liu, H. Wang, L. Ouyang, D. Sun et al., Mg-TM (TM: Ti, Nb, V Co, Mo or Ni) core-shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A 2, 9645-9655 (2014). | 28. | M. Chen, M. Hu, X. Xie, T. Liu, High loading nanoconfinement of V-decorated Mg with 1 nm carbon shells: hydrogen storage properties and catalytic mechanism. Nanoscale 11, 10045-10055 (2019). | 29. | X. Zhang, X. Zhang, L. Zhang, Z. Huang, F. Fang et al., Remarkable low-temperature hydrogen cycling kinetics of Mg enabled by VH nanoparticles. J. Mater. Sci. Technol. 144, 168-177 (2023). | 30. | Q. Li, M. Yan, Y. Xu, X.L. Zhang, K.T. Lau et al., Computational investigation of MgH2/NbOx for hydrogen storage. J. Phys. Chem. C 125, 8862-8868 (2021). | 31. | L. Ren, W. Zhu, Y. Li, X. Lin, H. Xu et al., Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2. Nano-Micro Lett. 14, 144 (2022). | 32. | H. Zhang, Q. Kong, S. Hu, D. Zhang, H. Chen et al., Engineering the oxygen vacancies in Na2Ti3O7 for boosting its catalytic performance in MgH2 hydrogen storage. ACS Sustain. Chem. Eng. 10, 363-371 (2022). | 33. | P. Liu, H. Chen, H. Yu, X. Liu, R. Jiang et al., Oxygen vacancy in magnesium/cerium composite from ball milling for hydrogen storage improvement. Int. J. Hydrog. Energy 44, 13606-13612 (2019). | 34. | Z. Han, H. Chen, S. Zhou, Dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces: a density functional theory study. Appl. Surf. Sci. 394, 371-377 (2017). | 35. | C. Duan, M. Wu, X. Wang, D. Fu, Y. Zhang et al., The effect of vacancy defective Mg (0001) surface on hydrogenation of Ni-Mg-CNTs: a mechanistic investigation. Fuel 341, 127730 (2023). | 36. | G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996). | 37. | G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169-11186 (1996). | 38. | J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996). | 39. | P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953-17979 (1994). | 40. | G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758-1775 (1999). | 41. | A. Badreldin, M.D. Imam, Y. Wubulikasimu, K. Elsaid, A.E. Abusrafa et al., Surface microenvironment engineering of black V2O5 nanostructures for visible light photodegradation of methylene blue. J. Alloys Compd. 871, 159615 (2021). | 42. | R. Zou, J. Li, W. Zhang, G. Lei, Z. Li et al., Enhancing the cycling stability of MgH2 using nitrogen modified titanate. J. Mater. Chem. A 11, 11748-11754 (2023). | 43. | H. Zhang, Y. Bu, W. Xiong, K. He, T. Yu et al., Effect of bimetallic nitride NiCoN on the hydrogen absorption and desorption properties of MgH2 and the catalytic effect of in situ formed Mg2Ni and Mg2Co phases. J. Alloys Compd. 965, 171431 (2023). | 44. | X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang et al., Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv. Mater. 25, 5091-5097 (2013). | 45. | X. Peng, X. Zhang, L. Wang, L. Hu, S.H.-S. Cheng et al., Hydrogenated V2O5 nanosheets for superior lithium storage properties. Adv. Funct. Mater. 26, 784-791 (2016). | 46. | X. Xiao, Z. Peng, C. Chen, C. Zhang, M. Beidaghi et al., Freestanding MoO3-nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy 9, 355-363 (2014). | 47. | X.-J. Wang, R. Nesper, C. Villevieille, P. Novák, Ammonolyzed MoO3 nanobelts as novel cathode material of rechargeable Li-ion batteries. Adv. Energy Mater. 3, 606-614 (2013). | 48. | Y. Wei, C.-W. Ryu, K.-B. Kim, Improvement in electrochemical performance of V2O5 by Cu doping. J. Power. Sources 165, 386-392 (2007). | 49. | B. Yan, L. Liao, Y. You, X. Xu, Z. Zheng et al., Single-crystalline V2O5 ultralong nanoribbon waveguides. Adv. Mater. 21, 2436-2440 (2009). | 50. | R. Baddour-Hadjean, J.P. Pereira-Ramos, C. Navone, M. Smirnov, Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films. Chem. Mater. 20, 1916-1923 (2008). | 51. | R. Baddour-Hadjean, M.B. Smirnov, K.S. Smirnov, V.Y. Kazimirov, J.M. Gallardo-Amores et al., Lattice dynamics of β-V2O5: Raman spectroscopic insight into the atomistic structure of a high-pressure vanadium pentoxide polymorph. Inorg. Chem. 51, 3194-3201 (2012). | 52. | V. Eyert, K.-H. Höck, Electronic structure of V2O5: role of octahedral deformations. Phys. Rev. B 57, 12727-12737 (1998). | 53. | H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702-1706 (1957). | 54. | L. Ren, W. Zhu, Q. Zhang, C. Lu, F. Sun et al., MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage. Chem. Eng. J. 434, 134701 (2022). | 55. | J.H. Sharp, G.W. Brindley, B.N. Narahari Achar, Numerical data for some commonly used solid state reaction equations. J. Am. Ceram. Soc. 49, 379-382 (1966). | 56. | Z. Ma, S. Panda, Q. Zhang, F. Sun, D. Khan et al., Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold. Chem. Eng. J. 406, 126790 (2021). | 57. | Z. Lan, H. Fu, R. Zhao, H. Liu, W. Zhou et al., Roles of in situ-formed NbN and Nb2O5 from N-doped Nb2C MXene in regulating the re/hydrogenation and cycling performance of magnesium hydride. Chem. Eng. J. 431, 133985 (2022). | 58. | H. Fu, J. Hu, Y. Lu, X. Li, Y.-A. Chen et al., Synergistic effect of a facilely synthesized MnV2O6 catalyst on improving the low-temperature kinetic properties of MgH2. ACS Appl. Mater. Interfaces 14, 33161-33172 (2022). | 59. | S. Kumar, A. Jain, T. Ichikawa, Y. Kojima, G.K. Dey, Development of vanadium based hydrogen storage material: a review. Renew. Sustain. Energy Rev. 72, 791-800 (2017). | 60. | P. Khajondetchairit, L. Ngamwongwan, P. Hirunsit, S. Suthirakun, Synergistic effects of V and Ni catalysts on hydrogen sorption kinetics of Mg-based hydrogen storage materials: a computational study. J. Phys. Chem. C 126, 5483-5492 (2022). | 61. | D. Zhou, P. Peng, J. Liu, First-principles calculation of dehydrogenating properties of MgH2-V systems. Sci. China Ser. E 49, 129-136 (2006). | 62. | A.J. Du, S.C. Smith, X.D. Yao, C.H. Sun, L. Li et al., The role of V2O5 on the dehydrogenation and hydrogenation in magnesium hydride: an ab initio study. Appl. Phys. Lett. 92, 163106 (2008). |
|
No related articles found! |
|
|
|
|