|
|
Multifunctional MOF@COF Nanoparticles Mediated Perovskite Films Management Toward Sustainable Perovskite Solar Cells |
Yayu Dong1,2, Jian Zhang1( ), Hongyu Zhang1, Wei Wang1, Boyuan Hu1, Debin Xia1, Kaifeng Lin1, Lin Geng3, Yulin Yang1( ) |
1 MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, People’s Republic of China 2 School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, People’s Republic of China 3 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, People’s Republic of China |
|
|
Abstract Although covalent organic frameworks (COFs) with high π-conjugation have recently exhibited great prospects in perovskite solar cells (PSCs), their further application in PSCs is still hindered by face-to-face stacking and aggregation issues. Herein, metal-organic framework (MOF-808) is selected as an ideal platform for the in situ homogeneous growth of a COF to construct a core-shell MOF@COF nanoparticle, which could effectively inhibit COF stacking and aggregation. The synergistic intrinsic mechanisms induced by the MOF@COF nanoparticles for reinforcing intrinsic stability and mitigating lead leakage in PSCs have been explored. The complementary utilization of π-conjugated skeletons and nanopores could optimize the crystallization of large-grained perovskite films and eliminate defects. The resulting PSCs achieve an impressive power conversion efficiency of 23.61% with superior open circuit voltage (1.20 V) and maintained approximately 90% of the original power conversion efficiency after 2000 h (30-50% RH and 25-30 °C). Benefiting from the synergistic effects of the in situ chemical fixation and adsorption abilities of the MOF@COF nanoparticles, the amount of lead leakage from unpackaged PSCs soaked in water (< 5 ppm) satisfies the laboratory assessment required for the Resource Conservation and Recovery Act Regulation.
|
Received: 26 December 2023
Published: 11 April 2024
|
Corresponding Authors:
Jian Zhang, Yulin Yang
|
|
|
|
|
Fig. 1 a Preparation process of the MOF@COF. Scanning electron microscopy (SEM) images of b MOF@COF. c Transmission electron microscopy (TEM) and d high-resolution (HR)-TEM images of MOF@COF. e XRD patterns
|
|
Fig. 2 a Schematic diagram of MOF@COF-functionalized perovskite films. SEM and KPFM images for b, d control and c, e MOF@COF-functionalized perovskite films. In situ TG-FTIR spectra of perovskite precursor solution f as a control and g with the MOF@COF. In situ XRD measurement of h control and i MOF@COF-functionalized perovskite films
|
|
Fig. 3 a Selected fragment and ESP in the MOF@COF. b Theoretical models of perovskite with the MOF@COF. c DFT charge difference calculations. DOS d before and e after the introduction of MOF@COF-passivated perovskite. 2D pseudocolor images and TAS spectra for f, h control and g, i MOF@COF
|
|
Fig. 4 KPFM images of the MOF@COF a without irradiation and b with irradiation for 10 min. c Relevant potential distribution. d Mott-Schottky curves. e J-V curves of different PSCs with different scan directions. f Statistical PCEs of 40 PSCs. g Stabilized power output at maximum power tracking. h Long-term stability
|
|
Fig. 5 Structure models for O (a side view and b bird view) and N atoms (c side view and d bird view) adsorbing leaking Pb2+ ions. e Pb concentration changes with contact time (Inset: pseudo-second-order model). TOF-SIMS depth profiles for f aged control and g MOF@COF-functionalized PSCs. Pb concentration in the polluted water was detected by h Pb2+ testing paper and i ICP-OES
|
1. | Q. Jiang, R. Tirawat, R.A. Kerner, E. Ashley Gaulding, Y. Xian et al., Towards linking lab and field lifetimes of perovskite solar cells. Nature 623, 313-318 (2023). | 2. | Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416-420 (2022). | 3. | National Renewable Energy Laboratory, Best research-cell efficiencies chart, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf | 4. | H. Luo, P. Li, J. Ma, X. Li, H. Zhu et al., Bioinspired “cage traps” for closed-loop lead management of perovskite solar cells under real-world contamination assessment. Nat. Commun. 14, 4730 (2023). | 5. | H. Zhang, L. Pfeifer, S.M. Zakeeruddin, J. Chu, M. Grätzel, Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7, 632-652 (2023). | 6. | H. Zhang, J.-W. Lee, G. Nasti, R. Handy, A. Abate et al., Lead immobilization for environmentally sustainable perovskite solar cells. Nature 617, 687-695 (2023). | 7. | H.L. Li, C. Chen, H.Y. Hu, Y. Li, Z.T. Shen et al., Facile RbBr interface modification improves perovskite solar cell efficiency. InfoMat 4, e12322 (2022). | 8. | J.-H. Zhao, X. Mu, L. Wang, Z. Fang, X. Zou et al., Homogeneously large polarons in aromatic passivators improves charge transport between perovskite grains for >24 % efficiency in photovoltaics. Angew. Chem. Int. Ed. 61, e202116308 (2022). | 9. | H. Liu, Z. Lu, W. Zhang, H. Zhou, Y. Xia et al., Synergistic optimization of buried interface by multifunctional organic-inorganic complexes for highly efficient planar perovskite solar cells. Nano-Micro Lett. 15, 156 (2023). | 10. | M. Yang, T. Tian, Y. Fang, W.-G. Li, G. Liu et al., Reducing lead toxicity of perovskite solar cells with a built-in supramolecular complex. Nat. Sustain. 6, 1455-1464 (2023). | 11. | X. Meng, X. Hu, Y. Zhang, Z. Huang, Z. Xing et al., A biomimetic self-shield interface for flexible perovskite solar cells with negligible lead leakage. Adv. Funct. Mater. 31, 2106460 (2021). | 12. | C.-H. Chen, S.-N. Cheng, L. Cheng, Z.-K. Wang, L.-S. Liao, Toxicity, leakage, and recycling of lead in perovskite photovoltaics. Adv. Energy Mater. 13, 2204144 (2023). | 13. | Y. Zhang, L. Xu, Y. Wu, H. Zhang, F. Zeng et al., Synergetic excess PbI2 and reduced Pb leakage management strategy for 24.28% efficient, stable and eco-friendly perovskite solar cells. Adv. Funct. Mater. 33, 2214102 (2023). | 14. | Y. Zhang, C. Zhou, L. Lin, F. Pei, M. Xiao et al., Gelation of hole transport layer to improve the stability of perovskite solar cells. Nano-Micro Lett. 15, 175 (2023). | 15. | Y. Yang, H.-Y. Zhang, Y. Wang, L.-H. Shao, L. Fang et al., Integrating enrichment, reduction, and oxidation sites in one system for artificial photosynthetic diluted CO2 reduction. Adv. Mater. 35, e2304170 (2023). | 16. | M. Zhang, J.-N. Chang, Y. Chen, M. Lu, T.-Y. Yu et al., Controllable synthesis of COFs-based multicomponent nanocomposites from core-shell to yolk-shell and hollow-sphere structure for artificial photosynthesis. Adv. Mater. 33, e2105002 (2021). | 17. | C. Wu, Y. Liu, H. Liu, C. Duan, Q. Pan et al., Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement. J. Am. Chem. Soc. 140, 10016-10024 (2018). | 18. | R. Nie, W. Chu, Z. Li, H. Li, S. Chen et al., Simultaneously suppressing charge recombination and decomposition of perovskite solar cells by conjugated covalent organic frameworks. Adv. Energy Mater. 12, 2200480 (2022). | 19. | J. Zhang, J. Duan, Q. Guo, Q. Zhang, Y. Zhao et al., A universal grain “cage” to suppress halide segregation of mixed-halide inorganic perovskite solar cells. ACS Energy Lett. 7, 3467-3475 (2022). | 20. | J. He, H. Liu, F. Zhang, X. Li, S. Wang, In situ synthesized 2D covalent organic framework nanosheets induce growth of high-quality perovskite film for efficient and stable solar cells. Adv. Funct. Mater. 32, 2110030 (2022). | 21. | M.G. Mohamed, C.-C. Lee, A.F.M. EL-Mahdy, J. Lüder, M.-H. Yu et al., Exploitation of two-dimensional conjugated covalent organic frameworks based on tetraphenylethylene with bicarbazole and pyrene units and applications in perovskite solar cells. J. Mater. Chem. A 8, 11448-11459 (2020). | 22. | Z. Li, Z. Zhang, R. Nie, C. Li, Q. Sun et al., Construction of stable donor-acceptor type covalent organic frameworks as functional platform for effective perovskite solar cell enhancement. Adv. Funct. Mater. 32, 2112553 (2022). | 23. | J. Guo, G. Meng, X. Zhang, H. Huang, J. Shi et al., Dual-interface modulation with covalent organic framework enables efficient and durable perovskite solar cells. Adv. Mater. 35, e2302839 (2023). | 24. | X. Gao, Z. Li, J. Guo, G. Meng, B. Wang et al., Covalent organic framework as a precursor additive toward efficient and stable perovskite solar cells. Adv. Energy Sustain. Res. 5, 2300205 (2024). | 25. | C.-C. Chueh, C.-I. Chen, Y.-A. Su, H. Konnerth, Y.-J. Gu et al., Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. J. Mater. Chem. A 7, 17079-17095 (2019). | 26. | C.-C. Lee, C.-I. Chen, Y.-T. Liao, K.C.-W. Wu, C.-C. Chueh, Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr-MOF heterojunction including bilayer and hybrid structures. Adv. Sci. 6, 1801715 (2019). | 27. | Y. Liu, T. Liu, X. Guo, M. Hou, Y. Yuan et al., Porphyrinic metal-organic framework quantum dots for stable n-i-p perovskite solar cells. Adv. Funct. Mater. 33, 2210028 (2023). | 28. | J. Dou, C. Zhu, H. Wang, Y. Han, S. Ma et al., Synergistic effects of Eu-MOF on perovskite solar cells with improved stability. Adv. Mater. 33, e2102947 (2021). | 29. | U. Ryu, S. Jee, J.-S. Park, I.K. Han, J.H. Lee et al., Nanocrystalline titanium metal-organic frameworks for highly efficient and flexible perovskite solar cells. ACS Nano 12, 4968-4975 (2018). | 30. | J. Zhang, S. Guo, M. Zhu, C. Li, J. Chen et al., Simultaneous defect passivation and hole mobility enhancement of perovskite solar cells by incorporating anionic metal-organic framework into hole transport materials. Chem. Eng. J. 408, 127328 (2021). | 31. | S. Wu, Z. Li, M.-Q. Li, Y. Diao, F. Lin et al., 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 15, 934-940 (2020). | 32. | H.-Y. Zhang, Y. Yang, C.-C. Li, H.-L. Tang, F.-M. Zhang et al., A new strategy for constructing covalently connected MOF@COF core-shell heterostructures for enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A 9, 16743-16750 (2021). | 33. | Y. Zheng, X. Wu, J. Liang, Z. Zhang, J. Jiang et al., Downward homogenized crystallization for inverted wide-bandgap mixed-halide perovskite solar cells with 21% efficiency and suppressed photo-induced halide segregation. Adv. Funct. Mater. 32, 2200431 (2022). | 34. | Y. Zhao, H. Tan, H. Yuan, Z. Yang, J.Z. Fan et al., Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 9, 1607 (2018). | 35. | Y. Dong, W. Shen, W. Dong, C. Bai, J. Zhao et al., Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells. Adv. Energy Mater. 12, 2270082 (2022). | 36. | J. Luo, F. Lin, J. Xia, H. Yang, R. Zhang et al., An efficient and hydrophobic molecular doping in perovskite solar cells. Nano Energy 82, 105751 (2021). | 37. | P. Qin, T. Wu, Z. Wang, L. Xiao, L. Ma et al., Grain boundary and interface passivation with core-shell Au@CdS nanospheres for high-efficiency perovskite solar cells. Adv. Funct. Mater. 30, 1908408 (2020). | 38. | K. Li, L. Zhang, Y. Ma, Y. Gao, X. Feng et al., Au nanocluster assisted microstructural reconstruction for buried interface healing for enhanced perovskite solar cell performance. Adv. Mater. 36, e2310651 (2024). | 39. | P. Guo, H. Zhu, W. Zhao, C. Liu, L. Zhu et al., Interfacial embedding of laser-manufactured fluorinated gold clusters enabling stable perovskite solar cells with efficiency over 24. Adv. Mater. 33, e2101590 (2021). | 40. | X. Jin, Y. Yang, T. Zhao, X. Wu, B. Liu et al., Mitigating potential lead leakage risk of perovskite solar cells by device architecture engineering from exterior to interior. ACS Energy Lett. 7, 3618-3636 (2022). | 41. | W. Zhao, M. Wu, Z. Liu, S. Yang, Y. Li et al., Orientation engineering via 2D seeding for stable 24.83% efficiency perovskite solar cells. Adv. Energy Mater. 13, 2204260 (2023). | 42. | W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022). | 43. | R. Wang, J. Xue, K.L. Wang, Z.K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509-1513 (2019). | 44. | W. Zhao, P. Guo, J. Su, Z. Fang, N. Jia et al., Synchronous passivation of defects with low formation energies via terdentate anchoring enabling high performance perovskite solar cells with efficiency over 24%. Adv. Funct. Mater. 32, 2200534 (2022). | 45. | Y. Wang, X.B. Wang, C.H. Wang, R.Y. Cheng, L.X. Zhao et al., Defect suppression and energy level alignment in formamidinium-based perovskite solar cells. J. Energy Chem. 67, 65-72 (2022). | 46. | Y. Dong, S. Gai, J. Zhang, R. Fan, B. Hu et al., Metal-organic frameworks with mixed-ligands strategy as heterogeneous nucleation center to assist crystallization for efficient and stable perovskite solar cells. J. Energy Chem. 77, 1-10 (2023). | 47. | Q. Li, Y. Zhao, R. Fu, W. Zhou, Y. Zhao et al., Efficient perovskite solar cells fabricated through CsCl-enhanced PbI2 precursor via sequential deposition. Adv. Mater. (2018). | 48. | Y. Dong, J. Zhang, W. Wang, B. Hu, D. Xia et al., Regulating crystallization and lead leakage of perovskite solar cell via novel polyoxometalate-based metal-organic framework. Small 19, e2301824 (2023). | 49. | H. Zhang, Z. Ren, K. Liu, M. Qin, Z. Wu et al., Controllable heterogenous seeding-induced crystallization for high-efficiency FAPbI3-based perovskite solar cells over 24. Adv. Mater. 34, e2204366 (2022). | 50. | Q. Cao, T. Wang, J.B. Yang, Y.X. Zhang, Y.K. Li et al., Environmental-friendly polymer for efficient and stable inverted perovskite solar cells with mitigating lead leakage. Adv. Funct. Mater. (2022). | 51. | J. Shi, B. Cohen-Kleinstein, X. Zhang, C. Zhao, Y. Zhang et al., In situ iodide passivation toward efficient CsPbI3 perovskite quantum dot solar cells. Nano-Micro Lett. 15, 163 (2023). | 52. | W. Sheng, J. He, J. Yang, Q. Cai, S. Xiao et al., Multifunctional metal-organic frameworks capsules modulate reactivity of lead iodide toward efficient perovskite solar cells with UV resistance. Adv. Mater. 35, e2301852 (2023). | 53. | Y. Liang, P. Song, H. Tian, C. Tian, W. Tian et al., Lead leakage preventable fullerene-porphyrin dyad for efficient and stable perovskite solar cells. Adv. Funct. Mater. 32, 2110139 (2022). | 54. | Y. Dong, J. Zhang, Y. Yang, J. Wang, B. Hu et al., Multifunctional nanostructured host-guest POM@MOF with lead sequestration capability induced stable and efficient perovskite solar cells. Nano Energy 97, 107184 (2022). | 55. | B. Niu, H. Wu, J. Yin, B. Wang, G. Wu et al., Mitigating the lead leakage of high-performance perovskite solar cells via in situ polymerized networks. ACS Energy Lett. 6, 3443-3449 (2021). | 56. | R.L.Z. Hoye, Preventing lead release from perovskites. Nat. Sustain. 6, 1297-1299 (2023). | 57. | Y.S. Gao, Y.Q. Hu, C.L. Yao, S.F. Zhang, Recent advances in lead-safe perovskite solar cells. Adv. Funct. Mater. (2022). | 58. | H. Zhang, F.T. Eickemeyer, Z. Zhou, M. Mladenović, F. Jahanbakhshi et al., Multimodal host-guest complexation for efficient and stable perovskite photovoltaics. Nat. Commun. 12, 3383 (2021). |
|
[1] |
Wenhao Zhao, Pengfei Guo, Jiahao Wu, Deyou Lin, Ning Jia, Zhiyu Fang, Chong Liu, Qian Ye, Jijun Zou, Yuanyuan Zhou, Hongqiang Wang. TiO2 Electron Transport Layer with p-n Homojunctions for Efficient and Stable Perovskite Solar Cells[J]. Nano-Micro Letters, 2024, 16(1): 191-. |
[2] |
Juan Zhang, Xiaofei Ji, Xiaoting Wang, Liujiang Zhang, Leyu Bi, Zhenhuang Su, Xingyu Gao, Wenjun Zhang, Lei Shi, Guoqing Guan, Abuliti Abudula, Xiaogang Hao, Liyou Yang, Qiang Fu, Alex K.-Y. Jen, Linfeng Lu. Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid-Liquid Two-Step Film Formation[J]. Nano-Micro Letters, 2024, 16(1): 190-. |
[3] |
Marco Girolami, Fabio Matteocci, Sara Pettinato, Valerio Serpente, Eleonora Bolli, Barbara Paci, Amanda Generosi, Stefano Salvatori, Aldo Di Carlo, Daniele M. Trucchi. Metal-Halide Perovskite Submicrometer-Thick Films for Ultra-Stable Self-Powered Direct X-Ray Detectors[J]. Nano-Micro Letters, 2024, 16(1): 182-. |
[4] |
Fan He, Yingnan Liu, Xiaoxuan Yang, Yaqi Chen, Cheng-Chieh Yang, Chung-Li Dong, Qinggang He, Bin Yang, Zhongjian Li, Yongbo Kuang, Lecheng Lei, Liming Dai, Yang Hou. Accelerating Oxygen Electrocatalysis Kinetics on Metal-Organic Frameworks via Bond Length Optimization[J]. Nano-Micro Letters, 2024, 16(1): 175-. |
[5] |
Tian Mai, Lei Chen, Pei-Lin Wang, Qi Liu, Ming-Guo Ma. Hollow Metal-Organic Framework/MXene/Nanocellulose Composite Films for Giga/Terahertz Electromagnetic Shielding and Photothermal Conversion[J]. Nano-Micro Letters, 2024, 16(1): 169-. |
[6] |
Leqi Zhao, Yijun Zhong, Chencheng Cao, Tony Tang, Zongping Shao. Enhanced High-Temperature Cycling Stability of Garnet-Based All Solid-State Lithium Battery Using a Multi-Functional Catholyte Buffer Layer[J]. Nano-Micro Letters, 2024, 16(1): 124-. |
[7] |
Xiaoyang Xu, Jia Zhang, Zihao Zhang, Guandan Lu, Wei Cao, Ning Wang, Yunmeng Xia, Qingliang Feng, Shanlin Qiao. All-Covalent Organic Framework Nanofilms Assembled Lithium-Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics[J]. Nano-Micro Letters, 2024, 16(1): 116-. |
[8] |
Zerui Chen, Wei Zhao, Qian Liu, Yifei Xu, Qinghe Wang, Jinmin Lin, Hao Bin Wu. Janus Quasi-Solid Electrolyte Membranes with Asymmetric Porous Structure for High-Performance Lithium-Metal Batteries[J]. Nano-Micro Letters, 2024, 16(1): 114-. |
[9] |
Hyeongtae Lim, Hyeokjin Kwon, Hongki Kang, Jae Eun Jang, Hyuk-Jun Kwon. Laser-Induced and MOF-Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature[J]. Nano-Micro Letters, 2024, 16(1): 113-. |
[10] |
Ximeng Liu, Dan Zhao, John Wang. Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework[J]. Nano-Micro Letters, 2024, 16(1): 157-. |
|
|
|
|