集成舵的深海着陆器设计及分层滑模路径跟踪

  • 唐建国1 ,
  • 2 ,
  • 毛竞航1 ,
  • 2 ,
  • 刘明月1 ,
  • 2
展开
  • 1.上海交通大学海洋工程国家重点实验室,上海 200240; 2.上海交通大学三亚崖州湾深海科技研究院,海南 三亚 572024
唐建国(1996— ),男,硕士研究生,主要从事深海着陆器设计与控制研究。
毛竞航(1996— ),男,上海交通大学工程师,主要从事水下装备控制系统及深海采矿车动力学与行进控制相关研究。

网络出版日期: 2025-06-05

基金资助

海南省科技计划三亚崖州湾科技城自然科学基金联合项目(2021JJLH0027);基于虚拟势场的深海采矿车人机协同轨迹规划控制研究(Hnky2024-94)

Design and Hierarchical Sliding Mode Path Tracking of Deep-Sea Lander with Rudder

  • TANG Jianguo1 ,
  • 2 ,
  • MAO Jinghang1 ,
  • 2 ,
  • LIU Mingyue1 ,
  • 2
Expand
  • 1.State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2.Yazhou Bay Institute of Deep-Sea Sci-Tech, Shanghai Jiao Tong University, Sanya 572024, Hainan, China

Online published: 2025-06-05

摘要

深海着陆器在下潜过程中,由于受到海流的影响,其坐底位置会偏离投放点。为解决深海着陆器由于不受控而发生轨迹偏离的问题,提出集成双舵的新型着陆器,可以高效率、低能耗精准着陆。以集成双舵的深海着陆器为研究对象,通过对系统进行一定的简化,建立了着陆器的动力学模型。基于Matlab平台建立深海着陆器下潜过程的仿真分析方法。利用Matlab Simulink环境对深海着陆器下潜过程进行仿真,分析了舵尺寸和舵偏角对着陆器下潜速度和轨迹的影响以及舵尺寸对着陆器稳定性的影响,从而选定舵的具体尺寸。利用中值定理将系统的非仿射动力学方程变为仿射动力学方程,并针对系统的欠驱动性质,设计分层滑模控制器对预先设计的直线路径和S形路径进行跟踪,取得了良好的效果。

本文引用格式

唐建国1 , 2 , 毛竞航1 , 2 , 刘明月1 , 2 . 集成舵的深海着陆器设计及分层滑模路径跟踪[J]. 海洋工程装备与技术, 2025 , 12(1) : 106 -118 . DOI: 10.12087/oeet.2095-7297.2025.01.15

Abstract

In the process of deep-sea lander dive, due to the influence of ocean currents, the sitting bottom position will deviate from the drop point. In order to solve the problem of trajectory deviation of deep-sea lander due to uncontrolled state, a type of lander with dual rudders is proposed, which can be landed accurately with high efficiency and low energy consumption. Taking the deep-sea lander with dual rudders as the research object, the dynamics model of the lander is established by simplifying the system to a certain extent. Based on the Matlab platform, the simulation and analysis method of the dive process of the deep-sea lander is established. Matlab Simulink environment is used to simulate the dive process of the deep-sea lander, and the effects of the rudder size and rudder deflection angle on the dive speed and trajectory of the lander, as well as the effects of the rudder size on the stability of the lander, are analyzed in order to determine the specific size of the rudder. The median theorem is used to change the system's non-affine dynamics equations into affine dynamics equations, and a hierarchical sliding mode controller is designed to track the pre-designed linear and S-shaped paths in response to the underdriven nature of the system, which achieves good results.
文章导航

/