1. |
S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574-578 ( 2010). https://doi.org/10.1038/nnano.2010.132
|
2. |
B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong et al., Uniform self-forming metallic network as a high-performance transparent conductive electrode. Adv. Mater. 26, 873-877 ( 2014). https://doi.org/10.1002/adma.201302950
|
3. |
J. Li, J. Liang, L. Li, F. Ren, W. Hu et al., Healable capacitive touch screen sensors based on transparent composite electrodes comprising silver nanowires and a furan/maleimide diels-alder cycloaddition polymer. ACS Nano 8, 12874-12882 ( 2014). https://doi.org/10.1021/nn506610p
|
4. |
J. Han, J. Yang, W. Gao, H. Bai, Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 31, 2010155 ( 2021). https://doi.org/10.1002/adfm.202010155
|
5. |
S. Gao, X. Zhao, Q. Fu, T. Zhang, J. Zhu et al., Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J. Mater. Sci. Technol. 126, 152-160 ( 2022). https://doi.org/10.1016/j.jmst.2022.03.012
|
6. |
C. Ge, E. Yang, X. Zhao, C. Yuan, S. Li et al., Efficient near-infrared PbS quantum dot solar cells employing hydrogenated In 2 O 3 transparent electrode. Small 18, e2203677 ( 2022). https://doi.org/10.1002/smll.202203677
|
7. |
Y. Liu, X. Huang, J. Zhou, C.K. Yiu, Z. Song et al., Stretchable sweat-activated battery in skin-integrated electronics for continuous wireless sweat monitoring. Adv. Sci. 9, e2104635 ( 2022). https://doi.org/10.1002/advs.202104635
|
8. |
Q. Fan, J. Miao, X. Liu, X. Zuo, W. Zhang et al., Biomimetic hierarchically silver nanowire interwoven MXene mesh for flexible transparent electrodes and invisible camouflage electronics. Nano Lett. 22, 740-750 ( 2022). https://doi.org/10.1021/acs.nanolett.1c04185
|
9. |
Y.S. Choi, H. Jeong, R.T. Yin, R. Avila, A. Pfenniger et al., A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006-1012 ( 2022). https://doi.org/10.1126/science.abm1703
|
10. |
|
11. |
R.S. Datta, N. Syed, A. Zavabeti, A. Jannat, M. Mohiuddin et al., Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nat. Electron. 3, 51-58 ( 2020). https://doi.org/10.1038/s41928-019-0353-8
|
12. |
|
13. |
S. Jiang, P.-X. Hou, M.-L. Chen, B.-W. Wang, D.-M. Sun et al., Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci. Adv. 4, 9264 ( 2018). https://doi.org/10.1126/sciadv.aap9264
|
14. |
P.M. Rajanna, H. Meddeb, O. Sergeev, A.P. Tsapenko, S. Bereznev et al., Rational design of highly efficient flexible and transparent p-type composite electrode based on single-walled carbon nanotubes. Nano Energy 67, 104183 2020). https://doi.org/10.1016/j.nanoen.2019.104183
|
15. |
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706-710 ( 2009). https://doi.org/10.1038/nature07719
|
16. |
T. Chen, Y. Xue, A.K. Roy, L. Dai, Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 8, 1039-1046 ( 2014). https://doi.org/10.1021/nn405939w
|
17. |
M.-R. Azani, A. Hassanpour, T. Torres, Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)-free flexible solar cells. Adv. Energy Mater. 10, 2002536 ( 2020). https://doi.org/10.1002/aenm.202002536
|
18. |
Y. Ahn, Y. Jeong, D. Lee, Y. Lee, Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes. ACS Nano 9, 3125-3133 ( 2015). https://doi.org/10.1021/acsnano.5b00053
|
19. |
J. Ahn, H. Hwang, S. Jeong, J. Moon, Metal-nanowire-electrode-based perovskite solar cells: challenging issues and new opportunities. Adv. Energy Mater. 7, 1602751 ( 2017). https://doi.org/10.1002/aenm.201602751
|
20. |
J. Huang, S. Yang, X. Tang, L. Yang, W. Chen et al., Flexible, transparent, and wafer-scale artificial synapse array based on TiO x/Ti 3 C 2 t x film for neuromorphic computing. Adv. Mater. 35, e2303737 ( 2023). https://doi.org/10.1002/adma.202303737
|
21. |
T. Guo, D. Zhou, M. Gao, S. Deng, M. Jafarpour et al., Large-area smooth conductive films enabled by scalable slot-die coating of Ti 3C 2T x MXene aqueous inks. Adv. Funct. Mater. 33, 2213183 ( 2023). https://doi.org/10.1002/adfm.202213183
|
22. |
T. Guo, D. Zhou, S. Deng, M. Jafarpour, J. Avaro et al., Rational design of Ti 3C 2T x MXene inks for conductive, transparent films. ACS Nano 17, 3737-3749 ( 2023). https://doi.org/10.1021/acsnano.2c11180
|
23. |
X. Chen, S. Nie, W. Guo, F. Fei, W. Su et al., Printable high-aspect ratio and high-resolution Cu grid flexible transparent conductive film with figure of merit over 80 000. Adv. Electron. Mater. 5, 1800991 ( 2019). https://doi.org/10.1002/aelm.201800991
|
24. |
X. Chen, Y. Yin, W. Yuan, S. Nie, Y. Lin et al., Transparent thermotherapeutic skin patch based on highly conductive and stretchable copper mesh heater. Adv. Electron. Mater. 7, 2100611 ( 2021). https://doi.org/10.1002/aelm.202100611
|
25. |
H. Ji, J. Huang, W. Zhang, X. Chen, Y. Lu et al., Novel Ag-mesh transparent hybrid electrodes for highly efficient and mechanically stable flexible perovskite solar cells. Adv. Mater. Interfaces 9, 2200483 2022). https://doi.org/10.1002/admi.202200483
|
26. |
J. Schneider, P. Rohner, D. Thureja, M. Schmid, P. Galliker et al., Electrohydrodynamic NanoDrip printing of high aspect ratio metal grid transparent electrodes. Adv. Funct. Mater. 26, 833-840 ( 2016). https://doi.org/10.1002/adfm.201503705
|
27. |
L. Li, M. Gao, Y. Guo, J. Sun, Y. Li et al., Transparent Ag@Au-graphene patterns with conductive stability via inkjet printing. J. Mater. Chem. C 5, 2800-2806 ( 2017). https://doi.org/10.1039/C6TC05227D
|
28. |
M. Li, M. Zarei, K. Mohammadi, S.B. Walker, M. LeMieux et al., Silver meshes for record-performance transparent electromagnetic interference shielding. ACS Appl. Mater. Interfaces 15, 30591-30599 ( 2023). https://doi.org/10.1021/acsami.3c02088
|
29. |
D.S. Ghosh, T.L. Chen, V. Pruneri, High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl. Phys. Lett. 96, 041109 ( 2010). https://doi.org/10.1063/1.3299259
|
30. |
Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma et al., Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding. Sci. Rep. 6, 25601 ( 2016). https://doi.org/10.1038/srep25601
|
31. |
S. Kiruthika, R. Gupta, K.D.M. Rao, S. Chakraborty, N. Padmavathy et al., Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network. J. Mater. Chem. C 2, 2089-2094 ( 2014). https://doi.org/10.1039/C3TC32167C
|
32. |
W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Flexible, transparent, and conductive Ti 3C 2T x MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14, 16643-16653 ( 2020). https://doi.org/10.1021/acsnano.0c01635
|
33. |
|
34. |
|
35. |
|
36. |
V. Lazarus, L. Pauchard, From craquelures to spiral crack patterns: influence of layer thickness on the crack patterns induced by desiccation. Soft Matter 7, 2552-2559 ( 2011). https://doi.org/10.1039/C0SM00900H
|
37. |
A. Khan, S. Lee, T. Jang, Z. Xiong, C. Zhang et al., High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process. Small 12, 3021-3030 ( 2016). https://doi.org/10.1002/smll.201600309
|
38. |
D.S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23, 1482-1513 ( 2011). https://doi.org/10.1002/adma.201003188
|
39. |
J.-Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689-692 ( 2008). https://doi.org/10.1021/nl073296g
|
40. |
J.H. Seo, I. Hwang, H.D. Um, S. Lee, K. Lee et al., Cold isostatic-pressured silver nanowire electrodes for flexible organic solar cells via room-temperature processes. Adv. Mater. 29, 1701479 ( 2017). https://doi.org/10.1002/adma.201701479
|
41. |
Y. Sun, M. Chang, L. Meng, X. Wan, H. Gao et al., Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2, 513-520 ( 2019). https://doi.org/10.1038/s41928-019-0315-1
|
42. |
B. Deng, P.-C. Hsu, G. Chen, B.N. Chandrashekar, L. Liao et al., Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 15, 4206-4213 ( 2015). https://doi.org/10.1021/acs.nanolett.5b01531
|
43. |
|
44. |
W. Song, X. Fan, B. Xu, F. Yan, H. Cui et al., All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Adv. Mater. 30, e1800075 ( 2018). https://doi.org/10.1002/adma.201800075
|
45. |
|
46. |
|
47. |
Q. Wang, H. Sheng, Y. Lv, J. Liang, Y. Liu et al., A skin-mountable hyperthermia patch based on metal nanofiber network with high transparency and low resistivity toward subcutaneous tumor treatment. Adv. Funct. Mater. 32, 2270123 ( 2022). https://doi.org/10.1002/adfm.202270123
|
48. |
Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 ( 2021). https://doi.org/10.1007/s40820-021-00766-5
|
49. |
F. Deng, J. Wei, Y. Xu, Z. Lin, X. Lu et al., Regulating the electrical and mechanical properties of TaS 2 films via van der waals and electrostatic interaction for high performance electromagnetic interference shielding. Nano-Micro Lett. 15, 106 ( 2023). https://doi.org/10.1007/s40820-023-01061-1
|
50. |
R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 ( 2021). https://doi.org/10.1007/s40820-021-00597-4
|
51. |
S. Yang, R. Yang, Z. Lin, X. Wang, S. Liu et al., Ultrathin, flexible, and high-strength polypyrrole/Ti 3C 2T x film for wide-band gigahertz and terahertz electromagnetic interference shielding. J. Mater. Chem. A 10, 23570-23579 ( 2022). https://doi.org/10.1039/D2TA06805B
|
52. |
Y. Zhang, M.-K. Xu, Z. Wang, T. Zhao, L.-X. Liu et al., Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 15, 4916-4924 ( 2022). https://doi.org/10.1007/s12274-022-4311-9
|
53. |
J. Liu, Z. Liu, H.-B. Zhang, W. Chen, Z. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6, 1901094 ( 2020). https://doi.org/10.1002/aelm.201901094
|
54. |
J. Wang, X. Wu, Y. Wang, W. Zhao, Y. Zhao et al., Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nano-Micro Lett. 15, 11 ( 2022). https://doi.org/10.1007/s40820-022-00982-7
|
55. |
J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 ( 2022). https://doi.org/10.1007/s40820-022-00823-7
|
56. |
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 ( 2021). https://doi.org/10.1007/s40820-021-00624-4
|
57. |
D. Tan, C. Jiang, Q. Li, S. Bi, X. Wang et al., Development and current situation of flexible and transparent EM shielding materials. J. Mater. Sci. Mater. Electron. 32, 25603-25630 ( 2021). https://doi.org/10.1007/s10854-021-05409-4
|
58. |
Y. Yang, S. Chen, W. Li, P. Li, J. Ma et al., Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14, 8754-8765 ( 2020). https://doi.org/10.1021/acsnano.0c03337
|
59. |
L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu et al., Highly efficient and reliable transparent electromagnetic interference shielding film. ACS Appl. Mater. Interfaces 10, 11941-11949 ( 2018). https://doi.org/10.1021/acsami.8b00492
|
60. |
M. Hu, J. Gao, Y. Dong, K. Li, G. Shan et al., Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 28, 7101-7106 ( 2012). https://doi.org/10.1021/la300720y
|
61. |
X. Zhang, Y. Zhong, Y. Yan, Electrical, mechanical, and electromagnetic shielding properties of silver nanowire-based transparent conductive films. Phys. Status Solidi A 215, 1800014 2018). https://doi.org/10.1002/pssa.201800014
|
62. |
N. Zhang, Z. Wang, R. Song, Q. Wang, H. Chen et al., Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness. Sci. Bull. 64, 540-546 ( 2019). https://doi.org/10.1016/j.scib.2019.03.028
|
63. |
M. Jin, W. Chen, L.-X. Liu, H.-B. Zhang, L. Ye et al., Transparent, conductive and flexible MXene grid/silver nanowire hierarchical films for high-performance electromagnetic interference shielding. J. Mater. Chem. A 10, 14364-14373 ( 2022). https://doi.org/10.1039/D2TA03689D
|
64. |
Z.-Y. Jiang, W. Huang, L.-S. Chen, Y.-H. Liu, Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding. Opt. Express 27, 24194-24206 ( 2019). https://doi.org/10.1364/OE.27.024194
|
65. |
S. Shen, S.-Y. Chen, D.-Y. Zhang, Y.-H. Liu, High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices. Opt. Express 26, 27545-27554 ( 2018). https://doi.org/10.1364/OE.26.027545
|
66. |
J. Gu, S. Hu, H. Ji, H. Feng, W. Zhao et al., Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding. Nanotechnology 31, 185303 2020). https://doi.org/10.1088/1361-6528/ab6d9d
|
67. |
Y. Han, H. Zhong, N. Liu, Y. Liu, J. Lin et al., In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding. Adv. Electron. Mater. 4, 1800156 ( 2018). https://doi.org/10.1002/aelm.201800156
|