诊断学理论与实践 ›› 2021, Vol. 20 ›› Issue (02): 149-154.doi: 10.16150/j.1671-2870.2021.02.006
收稿日期:
2020-10-13
出版日期:
2021-04-25
发布日期:
2022-06-28
通讯作者:
董治亚
E-mail:dzy831@126.com
LI Lin, AN Jingjing, WANG Junqi, WANG Xinqiong, DONG Zhiya()
Received:
2020-10-13
Online:
2021-04-25
Published:
2022-06-28
Contact:
DONG Zhiya
E-mail:dzy831@126.com
摘要:
目的:评估特发性身材矮小(idiopathic short stature,ISS)儿童与正常身高儿童的肠道菌群结构特征及组成差异,探究肠道菌群影响ISS发病的可能机制。方法:研究对象包括32名年龄4~8岁青春期前儿童,其中16例儿童被诊断为ISS(ISS组),另16名为正常身高健康儿童(对照组)。选用细菌16S rRNA的V3~V4区作为目标片段,采用第二代测序技术检测研究对象粪便中的肠道菌群,分析比较2组间肠道菌群的多样性和丰度。结果:ISS组与对照组之间的肠道菌群组成存在显著差异,ISS组肠道菌群的多样性指数Chao1为1 109.85±435.23,显著低于对照组(1 485.68±334.51)(P=0.018);ISS组肠道菌群的多样性指数Observed_species为946.98±374.93,显著低于对照组(1 217.69±289.66)(P=0.038),提示ISS组肠道菌群的丰度降低。菌群分析发现,ISS组的柔嫩梭菌属(Faecalibac-terium)、真杆菌属(Eubacterium)相对丰度显著低于对照组(P<0.05);在ISS组内,柔嫩梭菌属、真杆菌属与其身高标准差积分(standard deviation score,SDS)及胰岛素样生长因子1(insulin-like growth factor 1,IGF-1)SDS均呈显著正相关(r均>0.6,P<0.05)。结论:ISS组肠道菌群的丰度降低,菌群结构发生显著变化。ISS患儿肠道内的柔嫩梭菌属、真杆菌属通过短链脂肪酸(short-chain fatty acid,SCFA)使IGF-1合成减少,可能是致病原因之一。
中图分类号:
李林, 安静静, 王俊祺, 王歆琼, 董治亚. 16S rRNA第二代测序技术分析特发性身材矮小儿童肠道菌群构成的特征及相关发病机制研究[J]. 诊断学理论与实践, 2021, 20(02): 149-154.
LI Lin, AN Jingjing, WANG Junqi, WANG Xinqiong, DONG Zhiya. The structure of gut microbiome in idiopathic short stature profiled by 16S rRNA second generation sequencing sequencing[J]. Journal of Diagnostics Concepts & Practice, 2021, 20(02): 149-154.
[1] |
Lindsay R, Feldkamp M, Harris D, et al. Utah growth study: growth standards and the prevalence of growth hormone deficiency[J]. J Pediatr, 1994, 125(1):29-35.
doi: 10.1016/S0022-3476(94)70117-2 URL |
[2] |
Chassaing B, Aitken JD, Gewirtz AT, et al. Gut microbiota drives metabolic disease in immunologically altered mice[J]. Adv Immunol, 2012, 116:93-112.
doi: 10.1016/B978-0-12-394300-2.00003-X pmid: 23063074 |
[3] |
Kane AV, Dinh DM, Ward HD. Childhood malnutrition and the intestinal microbiome[J]. Pediatr Res, 2015, 77(1-2):256-262.
doi: 10.1038/pr.2014.179 URL |
[4] |
Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead[J]. Gastroenterology, 2014, 146(6):1489-1499.
doi: 10.1053/j.gastro.2014.02.009 URL |
[5] |
Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122):1027-1031.
doi: 10.1038/nature05414 URL |
[6] |
Wang Y, Kasper LH. The role of microbiome in central nervous system disorders[J]. Brain Behav Immun, 2014, 38:1-12.
doi: 10.1016/j.bbi.2013.12.015 pmid: 24370461 |
[7] |
Storelli G, Defaye A, Erkosar B, et al. Lactobacillus plantarum promotes drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing[J]. Cell Metab, 2011, 14(3):403-414.
doi: 10.1016/j.cmet.2011.07.012 pmid: 21907145 |
[8] |
Avella MA, Place A, Du SJ, et al. Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems[J]. PLoS One, 2012, 7(9):e45572.
doi: 10.1371/journal.pone.0045572 URL |
[9] |
Kareem KY, Loh TC, Foo HL, et al. Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, faecal microbiota and volatile fatty acids in broilers[J]. BMC Vet Res, 2016, 12(1):163.
doi: 10.1186/s12917-016-0790-9 URL |
[10] | 李辉, 季成叶, 宗心南, 等. 中国0-18岁儿童、青少年体块指数的生长曲线[J]. 中华儿科杂志, 2009, 47(7):493-498. |
[11] |
Isojima T, Shimatsu A, Yokoya S, et al. Standardized centile curves and reference intervals of serum insulin-like growth factor-I(IGF-I) levels in a normal Japanese population using the LMS method[J]. Endocr J, 2012, 59(9):771-780.
doi: 10.1507/endocrj.EJ12-0110 URL |
[12] |
Shin SC, Kim SH, You H, et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling[J]. Science, 2011, 334(6056):670-674.
doi: 10.1126/science.1212782 URL |
[13] |
Schwarzer M, Strigini M, Leulier F. Gut Microbiota and Host Juvenile Growth[J]. Calcif Tissue Int, 2018, 102(4):387-405.
doi: 10.1007/s00223-017-0368-y URL |
[14] |
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145):569-573.
doi: 10.1126/science.1241165 URL |
[15] | Yan J, Herzog JW, Tsang K, et al. Gut microbiota induce IGF-1 and promote bone formation and growth[J]. Proc Natl Acad Sci USA, 2016, 113(47):E7554-E7563. |
[16] | Hustoft TN, Hausken T, Ystad SO, et al. Effects of va-rying dietary content of fermentable short-chain carbohydrates on symptoms, fecal microenvironment, and cytokine profiles in patients with irritable bowel syndrome[J/OL]. Neurogastroenterol Motil, 2016-10-16[2020-10-13]. https://pubmed.ncbi.nlm.nih.gov/27747984/. |
[17] |
Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine[J]. FEMS Microbiol Lett, 2009, 294(1):1-8.
doi: 10.1111/j.1574-6968.2009.01514.x URL |
[1] | 许飞, 尹明月, 王伟, 董治亚, 陆文丽, 余熠, 王歆琼, 王俊祺, 肖园. 性早熟女童肠道菌群和抗生素耐药性的宏基因组分析[J]. 诊断学理论与实践, 2022, 21(01): 52-61. |
[2] | 李惠, 冯洁, 韩立中. 高通量测序技术分析无特定病原体级实验小鼠肠道的菌群组成[J]. 诊断学理论与实践, 2020, 19(1): 55-62. |
[3] | 安静静, 王俊祺, 肖园, 陆文丽, 李林, 王伟, 董治亚. 16S rRNA高通量测序分析肠道菌群对小于胎龄大鼠生长追赶的影响及其可能的机制[J]. 诊断学理论与实践, 2020, 19(04): 375-380. |
[4] | 陈瑶瑶, 顾爱华. 氧化三甲胺与心血管疾病关系的研究进展[J]. 诊断学理论与实践, 2019, 18(2): 237-240. |
[5] | 汪婷婷, 郑乃盛, 袁向亮, 沈立松. 基于16S rRNA高通量测序技术分析小鼠实验性结肠炎肠道菌群结构特征[J]. 诊断学理论与实践, 2019, 18(03): 263-270. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||