诊断学理论与实践 ›› 2019, Vol. 18 ›› Issue (06): 655-661.doi: 10.16150/j.1671-2870.2019.06.010
刁文晶, 皇甫昱婵, 朱威南, 刘婧娴, 刘瑛, 沈立松()
收稿日期:
2019-07-25
出版日期:
2019-12-25
发布日期:
2019-12-25
通讯作者:
沈立松
E-mail:lisongshen@hotmail.com
DIAO Wenjing, HUANGFU Yuchan, ZHU Weinan, LIU Jingxian, LIU Ying, SHEN Lisong()
Received:
2019-07-25
Online:
2019-12-25
Published:
2019-12-25
Contact:
SHEN Lisong
E-mail:lisongshen@hotmail.com
摘要:
目的:研究碳青霉烯酶基因,探讨临床分离的大肠埃希菌碳青霉烯类抗生素的耐药基因分布情况,为相关抗感染治疗提供依据。方法:收集2009年3月至2017年10月期间,我院住院患者临床标本中分离到的非重复耐碳青霉烯类大肠埃希菌菌株;使用MicroflexTM MALDI-TOF MS进行菌种复核;用Vitek-2 Compact全自动微生物分析仪联合纸片扩散法进行药物敏感性试验;采用碳青霉烯类抗菌药物灭活试验(modified carbapenem inactivation method,mCIM)快速筛查大肠埃希菌的产碳青霉烯酶表型;采用耐药基因常规PCR及测序的方法检测常见碳青霉烯酶基因;另收集所有患者的临床资料,分析其临床特征。结果:2009年3月至2017年12月,我院住院患者临床标本中分离到的非重复耐碳青霉烯类大肠埃希菌共84株。药物敏感性(药敏)试验结果显示,只有氨基糖苷类抗生素中阿米卡星的耐药率<50%,其他各种药物的耐药率都非常高,达到80%~100%。mCIM检测共筛选出71株产碳青霉烯酶菌株,而耐药基因PCR及测序的结果则显示,有65株携带blaNDM,以blaNDM-5(64.6%,42/65)和blaNDM-1(24.6%,16/65)为主,其中2株同时携带blaNDM-1和blaMCR-1。另有6株携带blakpc-2,未检测到blaGES、blaIMP、blaVIM、blaOXA等碳青霉烯酶基因。检测到产碳青霉烯酶菌株来自23个科室的17种标本,其中尿液占30.95%(26/84)和痰占21.43%(18/84);标本检出产碳青霉烯酶的患者则以儿科最多(66.7%,56/84)。儿童及婴幼儿中分离的大肠埃希菌中产酶型占96.4%(54/56),且以产酶型别blaNDM-5最多(63.0%,34/54);而老年患者中分离的非产酶型大肠埃希菌占62.5%(10/16); 在这些患者中,54%(45/84)的患者在住院期间曾接受过手术,33%(28/84)的患者曾接受留置深静脉导管等侵入性医疗操作。结论:我院临床患者分离到的耐碳青霉烯类大肠埃希菌呈多重耐药,产碳青霉烯酶的类型为NDM和KPC 2种,其中NDM-5检出率高达50%(42/84);来自儿科病房尤其是儿重症病房的标本,耐碳青霉烯类大肠埃希菌分离率最高。
中图分类号:
刁文晶, 皇甫昱婵, 朱威南, 刘婧娴, 刘瑛, 沈立松. 耐碳青霉烯类大肠埃希菌临床分离情况及碳青霉烯酶基因研究[J]. 诊断学理论与实践, 2019, 18(06): 655-661.
DIAO Wenjing, HUANGFU Yuchan, ZHU Weinan, LIU Jingxian, LIU Ying, SHEN Lisong. Study on carbapenem resistance genes within isolated carbapenem-resistant Escherichia coli strains[J]. Journal of Diagnostics Concepts & Practice, 2019, 18(06): 655-661.
表1
碳青霉烯酶基因扩增引物序列
耐药基因 | 引物序列(5′→3′) | 扩增片段长度(bp) | 参考文献 |
---|---|---|---|
KPC | F:GCTACACCTAGCTCCACCTTC R:ACAGTGGTTGGTAATCCATGC | 989 | [ |
IMP | F: CATGGTTTGGTGGTTCTTGT R: ATAATTTGGCGGACTTTGGC | 488 | [ |
VIM | F: ATTGGTCTATTTGACCGCGTC R: TGCTACTCAACGACTGAGCG | 780 | [ |
GES | F:AGCGACAATGGGGCTACTAAC R:GTGTAATAACTTGACCGACAGAGG | 465 | 本实验室设计 |
OXA | F:ACACAATACATATCAACTTCGC R:AGTGTGTTTAGAATGGTGATC | 813 | [ |
NDM | F:GAGCACCGCATTAGCCGCTG R:GCTATCGGGGGCGGAATGG | 727 | 本实验室设计 |
MCR | F:CGGTCAGTCCGTTTGTTC R:CTTGGTCGGTCTGTAGGG | 310 | 本实验室设计 |
表2
不同耐碳青霉烯类抗生素大肠埃希菌耐药类型的耐药率(%)
药物名称 | 产NDM酶 (n=65) | 产KPC酶 (n=6) | 不产酶株 (n=13) | P值 |
---|---|---|---|---|
亚胺培南 | 92.31% | 66.67% | 100% | 0.524 |
美罗培南 | 90.77% | 66.67% | 100% | 0.448 |
厄他培南 | 100% | 100% | 100% | - |
氨苄西林 | 100% | 100% | 100% | - |
阿米卡星 | 24.62% | 33.33% | 0.77% | 0.948 |
头孢美唑 | 89.23% | 100% | 76.92% | 0.375 |
头孢曲松 | 100% | 100% | 100% | - |
头孢吡肟 | 100% | 100% | 92.31% | 0.337 |
头孢呋辛钠 | 100% | 100% | 100% | - |
头孢噻肟 | 100% | 100% | 100% | - |
妥布霉素 | 50.77% | 66.67% | 38.46% | 0.365 |
头孢哌酮/舒巴坦 | 98.46% | 100% | 100% | 1 |
氨苄西林/舒巴坦 | 100% | 100% | 100% | - |
氨曲南 | 98.46% | 100% | 92.31% | 0.706 |
环丙沙星 | 87.69% | 100% | 76.92% | 0.476 |
头孢替坦 | 98.46% | 100% | 92.31% | 0.706 |
头孢唑林 | 98.46% | 100% | 92.31% | 0.706 |
庆大霉素 | 70.77% | 66.67% | 53.85% | 0.393 |
左氧氟沙星 | 89.23% | 83.33% | 76.92% | 0.476 |
哌拉西林 | 98.46% | 100% | 100% | 1 |
复方新诺明 | 56.92% | 66.67% | 76.92% | 0.193 |
头孢他啶 | 100% | 100% | 100% | - |
哌拉西林/他唑巴坦 | 98.46% | 100% | 61.54% | 0 |
[1] |
Zong Z, Fenn S, Connor C, et al. Complete genomic characterization of two Escherichia coli lineages responsible for a cluster of carbapenem-resistant infections in a Chinese hospital[J]. J Antimicrob Chemother, 2018, 73(9):2340-2346.
doi: 10.1093/jac/dky210 URL |
[2] | Tfifha M, Ferjani A, Mallouli M, et al. Carriage of multidrug-resistant bacteria among pediatric patients before and during their hospitalization in a tertiary pediatric unit in Tunisia[J]. Libyan J Med, 2018, 13(1):1419047. |
[3] |
Guh AY, Bulens SN, Mu Y, et al. Epidemiology of Carbapenem-Resistant Enterobacteriaceae in 7 US Communities, 2012-2013[J]. JAMA, 2015, 314(14):1479-1487.
doi: 10.1001/jama.2015.12480 URL |
[4] |
Ortega A, Sáez D, Bautista V, et al. Carbapenemase-producing Escherichia coli is becoming more prevalent in Spain mainly because of the polyclonal dissemination of OXA-48[J]. J Antimicrob Chemother, 2016, 71(8):2131-2138.
doi: 10.1093/jac/dkw148 URL |
[5] | 胡付品. 2005-2014年CHINET中国细菌耐药性监测网5种重要临床分离菌的耐药性变迁[J]. 2017, 17(1):93-99. |
[6] |
Potter RF, D'Souza AW, Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae[J]. Drug Resist Updat, 2016, 29:30-46.
doi: 10.1016/j.drup.2016.09.002 URL |
[7] |
Khan AU, Maryam L, Zarrilli R. Structure, genetics and worldwide spread of New Delhi metallo-β-lactamase (NDM): a threat to public health[J]. BMC Microbiol, 2017, 17(1):101.
doi: 10.1186/s12866-017-1012-8 URL |
[8] |
Zhang R, Chan EW, Zhou H, et al. Prevalence and genetic characteristics of carbapenem-resistant Enterobacteriaceae strains in China[J]. Lancet Infect Dis, 2017, 17(3):256-257.
doi: S1473-3099(17)30072-5 pmid: 28244381 |
[9] |
Liang WJ, Liu HY, Duan GC, et al. Emergence and mechanism of carbapenem-resistant Escherichia coli in Henan, China, 2014[J]. J Infect Public Health, 2018, 11(3):347-351.
doi: 10.1016/j.jiph.2017.09.020 URL |
[10] |
Zhang F, Zhu D, Xie L, et al. Molecular epidemiology of carbapenemase-producing Escherichia coli and the prevalence of ST131 subclone H30 in Shanghai, China[J]. Eur J Clin Microbiol Infect Dis, 2015, 34(6):1263-1269.
doi: 10.1007/s10096-015-2356-3 URL |
[11] |
Sjövall F, Alobaid AS, Wallis SC, et al. Maximally effective dosing regimens of meropenem in patients with septic shock[J]. J Antimicrob Chemother, 2018, 73(1):191-198.
doi: 10.1093/jac/dkx330 URL |
[12] | Performance standards for antimicrobial susceptibility testin[S]. Wayne: CLSI, 2018. |
[13] |
Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the national Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014[J]. Infect Control Hosp Epidemiol, 2016, 37(11):1288-1301.
doi: 10.1017/ice.2016.174 URL |
[14] |
Ku LC, Boggess KA, Cohen-Wolkowiez M. Bacterial meningitis in infants[J]. Clin Perinatol, 2015, 42(1):29-45,vii-viii.
doi: 10.1016/j.clp.2014.10.004 |
[15] |
Trepanier P, Mallard K, Meunier D, et al. Carbapenemase-producing Enterobacteriaceae in the UK: a national study (EuSCAPE-UK) on prevalence, incidence, laboratory detection methods and infection control measures[J]. J Antimicrob Chemother, 2017, 72(2):596-603.
doi: 10.1093/jac/dkw414 pmid: 27687074 |
[16] |
Gajamer VR, Bhattacharjee A, Paul D, et al. Escherichia coli encoding blaNDM-5 associated with community-acquired urinary tract infections with unusual MIC creep-like phenomenon against imipenem[J]. J Glob Antimicrob Resist, 2018, 14:228-232.
doi: S2213-7165(18)30088-2 pmid: 29775789 |
[17] |
Giufrè M, Errico G, Accogli M, et al. Emergence of NDM-5-producing Escherichia coli sequence type 167 clone in Italy[J]. Int J Antimicrob Agents, 2018, 52(1):76-81.
doi: 10.1016/j.ijantimicag.2018.02.020 URL |
[18] |
Munoz-Price LS, Poirel L, Bonomo RA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases[J]. Lancet Infect Dis, 2013, 13(9):785-796.
doi: 10.1016/S1473-3099(13)70190-7 pmid: 23969216 |
[19] |
Zhao D, Zhou Z, Hua X, et al. Coexistence of mcr-1, blaKPC-2 and two copies of fosA3 in a clinical Escherichia coli strain isolated from urine[J]. Infect Genet Evol, 2018, 60:77-79.
doi: 10.1016/j.meegid.2018.02.025 URL |
[20] | Guo Y, Hu FP, Zhu DM, et al. Antimicrobial resistance changes of carbapenem-resistant Enterobacteriaceae strains isolated from children[J]. Zhonghua Er Ke Za Zhi, 2018, 56(12):907-914. |
[21] |
Zhou Y, Zhu X, Hou H, et al. Characteristics of diarrheagenic Escherichia coli among children under 5 years of age with acute diarrhea: a hospital based study[J]. BMC Infect Dis, 2018, 18(1):63.
doi: 10.1186/s12879-017-2936-1 pmid: 29390982 |
[22] | Zhou Y, Liu S, Wang T, et al. Pterostilbene, a potential MCR-1 inhibitor that enhances the efficacy of polymyxin B[J]. Antimicrob Agents Chemother, 2018, 62(4),pii:e02146-17. |
[23] |
Zheng B, Lv T, Xu H, et al. Discovery and characterisation of an escherichia coli ST206 strain producing NDM-5 and MCR-1 from a patient with acute diarrhoea in China[J]. Int J Antimicrob Agents, 2018, 51(2):273-275.
doi: 10.1016/j.ijantimicag.2017.09.005 URL |
[24] |
Wang R, Liu Y, Zhang Q, et al. The prevalence of coli-stin resistance in Escherichia coli and Klebsiella pneumoniae isolated from food animals in China: coexistence of mcr-1 and blaNDM with low fitness cost[J]. Int J Antimicrob Agents, 2018, 51(5):739-744.
doi: 10.1016/j.ijantimicag.2018.01.023 URL |
[25] |
Xie M, Li R, Liu Z, et al. Recombination of plasmids in a carbapenem-resistant NDM-5-producing clinical Escherichia coli isolate[J]. J Antimicrob Chemother, 2018, 73(5):1230-1234.
doi: 10.1093/jac/dkx540 URL |
[26] |
Smith Moland E, Hanson ND, Herrera VL et al. Plasmid-mediated, carbapenem-hydrolysing beta-lactamase, KPC-2, in Klebsiella pneumoniae isolates[J]. J Antimicrob Chemother, 2003, 51(3):711-714.
doi: 10.1093/jac/dkg124 URL |
[27] |
Çetinkol Y, Sandalli C, Çalgin MK, et al. High prevalence of NDM metallo-β-lactamase among ESBL-produ-cing Escherichia coli Çsolates[J]. Acta Microbiol Immunol Hung, 2017, 64(2):131-141.
doi: 10.1556/030.63.2016.027 URL |
[28] |
Hafza N, Challita C, Dandachi I, et al. Competition assays between ESBL-producing E. coli and K. pneumoniae isolates collected from Lebanese elderly: An additional cost on fitness[J]. J Infect Public Health, 2018, 11(3):393-397.
doi: 10.1016/j.jiph.2017.09.010 URL |
[1] | 李丽, 朱咏臻, 周敏, 钱嘉, 方丽莉. 2017年至2021年上海嘉定区某医院多重耐药菌分析[J]. 诊断学理论与实践, 2022, 21(01): 62-67. |
[2] | 黄秋兰, 侯惠丽, 范德平,. 头孢菌素折点变化对大肠埃希菌和肺炎克雷伯菌药物敏感性及产超广谱β内酰胺酶菌株分布的影响[J]. 诊断学理论与实践, 2013, 12(02): 221-223. |
[3] | 孙立颖, 严岩, 蒋洪, 赵敏, 夏铁安, 徐国宾,. 25株耐碳青霉烯类抗生素鲍曼不动杆菌的耐药机制研究[J]. 诊断学理论与实践, 2006, 5(02): 134-138. |
[4] | 韩宝惠,钟华,顾爱琴,姜丽岩,沈洁,黄进肃,苏建中,冯久贤,王恩忠,董强刚. 耐药相关基因与肿瘤药敏试验对反映小细胞肺癌治疗效应的意义[J]. 诊断学理论与实践, 2003, 2(01): 42-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||