诊断学理论与实践 ›› 2024, Vol. 23 ›› Issue (02): 192-201.doi: 10.16150/j.1671-2870.2024.02.014
收稿日期:
2023-07-10
出版日期:
2024-04-25
发布日期:
2024-07-04
通讯作者:
倪瑛 E-mail: niying@bnu.edu.cn基金资助:
ZHOU Sifeng1a,2, ZHU Jieyun1b, XU Haishu1c, NI Ying3()
Received:
2023-07-10
Published:
2024-04-25
Online:
2024-07-04
摘要:
糖尿病视网膜病变(diabetic retinopathy, DR)是糖尿病常见的微血管并发症之一,其发病率逐年升高,1980年到2018年发病率为2.2%~12.7%。我国DR发病率为18.45%,全球DR患病率达22.27%。目前,DR已成为全世界成人失明的主要原因,严重影响了糖尿病患者的视网膜正常功能和生活质量。视网膜色素上皮(retinal pigment epithelium, RPE)是视网膜的最外层,对于维持视觉功能至关重要。RPE细胞可分泌色素上皮衍生因子(pigment epithelium-derived factor, PEDF)。PEDF是一种相对分子质量为50 000的天然糖蛋白,属于丝氨酸蛋白酶超家族的一员。现有研究表明,PEDF具有抑制血管生成、抗氧化、抗炎、营养神经等多种生物学活性,对包括DR在内的多种疾病具有保护作用。DR的发病机制较复杂,与氧化应激、炎症反应、线粒体功能障碍、血管内皮生长因子(vascular endothelial growth factor, VEGF)、小胶质细胞异常活化、晚期糖基化终末产物(advanced glycosylation end-pro-duct, AGE)蓄积等有关,其中涉及了Wnt/β-cantenin信号通路、线粒体解偶联蛋白(mitochondrial uncoupling protein, UCP)、核因子κB (nuclear factor-κB, NF-κB)通路、过氧化物酶体增殖物激活受体γ、AGE等。PEDF可以通过这些靶点和通路结合发挥作用,从而阻止DR的发生和进展。本文从PEDF抑制新生血管形成、抗氧化应激、抗炎这3个方面着手,阐述PEDF的不同作用靶点和通路在抑制DR发生、发展中的作用机制,为后期开发可广泛应用于临床的DR治疗新药提供理论依据。
中图分类号:
周思锋, 朱洁云, 徐海舒, 倪瑛. 色素上皮衍生因子在糖尿病视网膜病变中的作用机制研究进展[J]. 诊断学理论与实践, 2024, 23(02): 192-201.
ZHOU Sifeng, ZHU Jieyun, XU Haishu, NI Ying. Advances in mechanism on pigment epithelium derived factor in diabetes retinopathy[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(02): 192-201.
[1] | TEO Z L, THAM Y, YU M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045[J]. Ophthalmology, 2021, 128(11):1580-1591. |
[2] | RAMADAN A E H, ELSAYED M M A, ELSAYED A, et al. Development and optimization of vildagliptin solid lipid nanoparticles loaded ocuserts for controlled ocular delivery: A promising approach towards treating diabetic retinopathy[J]. Int J Pharm X, 2024, 7:100232. |
[3] | SABANAYAGAM C, BANU R, CHEE M L, et al. Incidence and progression of diabetic retinopathy: a systema-tic review[J]. Lancet Diabetes Endocrinol, 2019, 7(2):140-149. |
[4] | MILLUZZO A, MAUGERI A, BARCHITTA M, et al. Epigenetic mechanisms in type 2 diabetes retinopathy: a systematic review[J]. Int J Mol Sci, 2021, 22(19):10502. |
[5] | SONG P, YU J, CHAN K Y, et al. Prevalence, risk factors and burden of diabetic retinopathy in China: a systematic review and meta-analysis[J]. J Glob Health, 2018, 8(1):010803. |
[6] | LEASHER J L, BOURNE R R, FLAXMAN S R, et al. Global estimates on the number of people blind or visua-lly impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010[J]. Diabetes Care, 2016, 39(9):1643-1649. |
[7] | KANG Q, YANG C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications[J]. Redox Biol, 2020, 37:101799. |
[8] | WANG W, LO A C Y. Diabetic Retinopathy: Pathophysio-logy and Treatments[J]. Int J Mol Sci, 2018, 19(6):1816. |
[9] |
ABCOUWER S F. Müller Cell-Microglia Cross Talk Drives Neuroinflammation in Diabetic Retinopathy[J]. Diabetes, 2017, 66(2):261-263.
doi: 10.2337/dbi16-0047 pmid: 28108606 |
[10] |
SORRENTINO F S, ALLKABES M, SALSINI G, et al. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy[J]. Life Sci, 2016, 162:54-59.
doi: 10.1016/j.lfs.2016.08.001 pmid: 27497914 |
[11] | CHEN X, XU M, ZHANG X, et al. Deletion of the Pedf gene leads to inflammation, photoreceptor loss and vascular disturbances in the retina[J]. Exp Eye Res, 2022, 222:109171. |
[12] |
ANTONETTI D A, SILVA P S, STITT A W. Current understanding of the molecular and cellular pathology of diabetic retinopathy[J]. Nat Rev Endocrinol, 2021, 17(4):195-206.
doi: 10.1038/s41574-020-00451-4 pmid: 33469209 |
[13] |
MA B, ZHOU Y, LIU R, et al. Pigment epithelium-derived factor (PEDF) plays anti-inflammatory roles in the pathogenesis of dry eye disease[J]. Ocul Surf, 2021, 20:70-85.
doi: 10.1016/j.jtos.2020.12.007 pmid: 33412338 |
[14] |
WANG X, LIU X, REN Y, et al. PEDF protects human retinal pigment epithelial cells against oxidative stress via upregulation of UCP2 expression[J]. Mol Med Rep, 2019, 19(1):59-74.
doi: 10.3892/mmr.2018.9645 pmid: 30431098 |
[15] |
VIGNESWARA V, AHMED Z. Pigment epithelium-derived factor mediates retinal ganglion cell neuroprotection by suppression of caspase-2[J]. Cell Death Dis, 2019, 10(2):102.
doi: 10.1038/s41419-019-1379-6 pmid: 30718480 |
[16] | TIAN S W, REN Y, PEI J, et al. Pigment epithelium-derived factor protects retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction[J]. Int J Ophthalmol, 2017, 10(7):1046-1054. |
[17] | FAN R, SU L, ZHANG H, et al. Enhanced therapeutic effect of PEDF-loaded mesenchymal stem cell-derived small extracellular vesicles against oxygen-induced retinopathy through increased stability and penetrability of PEDF[J]. J Nanobiotechnology, 2023, 21(1):327. |
[18] |
XIANG W, LI L, ZHAO Q, et al. PEDF protects retinal pigment epithelium from ferroptosis and ameliorates dry AMD-like pathology in a murine model[J]. Geroscience, 2024, 46(2):2697-2714.
doi: 10.1007/s11357-023-01038-3 pmid: 38153666 |
[19] | TOMBRAN-TINK J, JOHNSON L V. Neuronal differentiation of retinoblastoma cells induced by medium conditioned by human RPE cells[J]. Invest Ophthalmol Vis Sci, 1989, 30(8):1700-1707. |
[20] | SINGH R B, BLANCO T, MITTAL S K, et al. Pigment Epithelium-derived Factor secreted by corneal epithelial cells regulates dendritic cell maturation in dry eye disea-se[J]. Ocul Surf, 2020, 18(3):460-469. |
[21] | 张琦, 赵磊, 左韬. 六味地黄汤对碘酸钠诱导的干性年龄相关性黄斑变性大鼠视网膜组织色素上皮衍生因子的表达及氧化应激水平的影响[J]. 世界中西医结合杂志, 2023, 18(8):1494-1499. |
ZHANG Q, ZHAO L, ZUO T. Effect of Liuwei Dihuang decoction on expression of pigment epithelium-derived factors and oxidative stress in retinal tissue of rats with dry age-related macular degeneration induced by sodium iodate[J]. World J Integr Tradit West Med, 2023, 18(08):1494-1499. | |
[22] |
CHEUNG C Y Y, LEE C H, TANG C S, et al. Genetic regulation of pigment epithelium-derived factor (PEDF): an exome-chip association analysis in Chinese subjects with type 2 diabetes[J]. Diabetes, 2019, 68(1):198-206.
doi: 10.2337/db18-0500 pmid: 30305369 |
[23] |
DAWSON D W, VOLPERT O V, GILLIS P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis[J]. Science, 1999, 285(5425):245-248.
doi: 10.1126/science.285.5425.245 pmid: 10398599 |
[24] | VOGT L M, TALENS S, KWASNIEWICZ E, et al. Activation of complement by pigment epithelium-derived factor (PEDF) in rheumatoid arthritis[J]. J Immunol, 2017, 199(3):1113-1121. |
[25] | FALERO-PEREZ J, PARK S, SORENSON C M, et al. PEDF expression affects retinal endothelial cell proangiogenic properties through alterations in cell adhesive mechanisms[J]. Am J Physiol Cell Physiol, 2017, 313(4):C405-C420. |
[26] | ARRIGO A, ARAGONA E, BANDELLO F. VEGF-targe-ting drugs for the treatment of retinal neovascularization in diabetic retinopathy[J]. Ann Med, 2022, 54(1):1089-1111. |
[27] | VIRGILIA G, CURRANA K, LUCENTEFORTE E, et al. Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis[J]. Cochrane Database Syst Rev, 2023, 2023(6):CD007419. |
[28] | ESLANI M, PUTRA I, SHEN X, et al. Corneal mesenchymal stromal cells are directly antiangiogenic via PEDF and sFLT-1[J]. Invest Ophthalmol Vis Sci, 2017, 58(12):5507-5517. |
[29] | XI L. Combination of pigment epithelium derived factor with anti-vascular endothelial growth factor therapy protects the neuroretina from ischemic damage[J]. Biomed Pharmacother, 2022, 151:113113. |
[30] | YOSHIDA T, AKIBA J, MATSUI T, et al. Pigment epithelium-derived factor (PEDF) prevents hepatic fat stora-ge, inflammation, and fibrosis in dietary steatohepatitis of mice[J]. Dig Dis Sci, 2017, 62(6):1527-1536. |
[31] |
CAI J, JIANG W G, GRANT M B, et al. Pigment epithelium-derived factor inhibits angiogenesis via regulated intracellular proteolysis of vascular endothelial growth factor receptor 1[J]. J Biol Chem, 2006, 281(6):3604-3613.
doi: 10.1074/jbc.M507401200 pmid: 16339148 |
[32] |
KANEMURA H, GO M J, NISHISHITA N, et al. Pigment epithelium-derived factor secreted from retinal pigment epithelium facilitates apoptotic cell death of iPSC[J]. Sci Rep, 2013, 3:2334.
doi: 10.1038/srep02334 pmid: 23903667 |
[33] |
CAI J, CHEN Z, RUAN Q, et al. γ-Secretase and presenilin mediate cleavage and phosphorylation of vascular endothelial growth factor receptor-1[J]. J Biol Chem, 2011, 286(49):42514-42523.
doi: 10.1074/jbc.M111.296590 pmid: 22016384 |
[34] |
JOHNSTON E K, FRANCIS M K, KNEPPER J E. Recombinant pigment epithelium-derived factor PEDF binds vascular endothelial growth factor receptors 1 and 2[J]. In Vitro Cell Dev Biol Anim, 2015, 51(7):730-738.
doi: 10.1007/s11626-015-9884-0 pmid: 25948043 |
[35] | 何巧娟, 张娜娜, 殷应传, 等. Wnt/β-catenin信号通路促进小鼠胚胎干细胞向胰岛素分泌细胞分化[J]. 安徽医科大学学报, 2019, 54(12):1841-1848. |
HE Q J, ZHANG N N, YIN Y C, et al. Wnt/β-Catenin signaling pathway promotes the differentiation of mouse embryonic stem cells into insulin producing cells[J]. Acta Univ Med Anhui, 2019, 54(12):1841-1848. | |
[36] | 田平平, 石明隽. 微小RNA参与Wnt/β-catenin信号通路在肾脏纤维化疾病中的研究进展[J]. 贵州医科大学学报, 2019, 44(1):1-5,17. |
TIAN P P, SHI M J. Research progress of microRNAs participate in Wnt/β-catenin signaling pathway in renal fibrosis disease[J]. J Guizhou Med Univ, 2019, 44(1):1-5,17. | |
[37] | 郑丽, 秦学维, 王利民, 等. 基于Wnt信号通路探究上调miR-184对糖尿病视网膜病变模型大鼠的干预效果[J]. 中国老年学杂志, 2023, 43(3):602-606. |
ZHENG L, QIN X W, WANG L M, et al. Intervention effect of up-regulated miR-184 on diabetic retinopathy model rats based on Wnt signaling pathway[J]. Chin J Gerontol, 2023, 43(3):602-606. | |
[38] |
CHEN Y, HU Y, LU K, et al. Very Low Density Lipoprotein Receptor, a Negative Regulator of the wnt Signaling Pathway and Choroidal Neovascularization[J]. J Biol Chem, 2007, 282(47):34420-34428.
doi: 10.1074/jbc.M611289200 pmid: 17890782 |
[39] |
NIE X, WEI X, MA H, et al. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications[J]. J Cell Mol Med, 2021, 25(14):6479-6495.
doi: 10.1111/jcmm.16663 pmid: 34042263 |
[40] |
KANG S. Low-density lipoprotein receptor-related protein 6-mediated signaling pathways and associated cardiovascular diseases: diagnostic and therapeutic opportunities[J]. Hum Genet, 2020, 139(4):447-459.
doi: 10.1007/s00439-020-02124-8 pmid: 32076828 |
[41] | 徐嫚鸿, 陈欣, 李筱荣. 色素上皮衍生因子受体在糖尿病视网膜病变发生发展中的作用和机制研究进展[J]. 中华眼底病杂志, 2023, 39(3):265-270. |
XU M H, CHEN X, LI X R. Progress on the function and mechanism of pigment epithelium derived factor receptors in the occurrence and development of diabetic retinopathy[J]. Chin J Ocul Fundus Dis, 2023, 39(3):265-270. | |
[42] |
PARK K, LEE K, ZHANG B, et al. Identification of a novel inhibitor of the canonical Wnt pathway[J]. Mol Cell Biol, 2011, 31(14):3038-3051.
doi: 10.1128/MCB.01211-10 pmid: 21576363 |
[43] | XU M, CHEN X, YU Z, et al. Receptors that bind to PEDF and their therapeutic roles in retinal diseases[J]. Front Endocrinol (Lausanne), 2023, 14:1116136. |
[44] | SHEIBANI N, WANG S, DARJATMOKO S R, et al. Novel anti-angiogenic PEDF-derived small peptides mitigate choroidal neovascularization[J]. Exp Eye Res, 2019, 188:107798. |
[45] |
GAO S, LI C, ZHU Y, et al. PEDF mediates pathological neovascularization by regulating macrophage recruitment and polarization in the mouse model of oxygen-induced retinopathy[J]. Sci Rep, 2017, 7:42846.
doi: 10.1038/srep42846 pmid: 28211523 |
[46] | CABELLO-VERRUGIO C, SIMON F, TROLLET C, et al. Oxidative stress in disease and aging: mechanisms and therapies 2016[J]. Oxid Med Cell Longev, 2017, 2017:4310469. |
[47] | GOLESTANEH N, CHU Y, XIAO Y, et al. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration[J]. Cell Death Dis, 2017, 8(1):e2537. |
[48] | 秦学维, 谢学军. 视网膜内环境平衡失调对糖尿病视网膜病变影响的研究进展[J]. 山东医药, 2017, 57(17):99-102. |
QIN X W, XIE X J. Research progress on the effect of retinal homeostasis on diabetes retinopathy[J]. Shandong Med J, 2017, 57(17):99-102. | |
[49] | LI S, DENG J, SUN D, et al. FBXW7 alleviates hyperglycemia-induced endothelial oxidative stress injury via ROS and PARP inhibition[J]. Redox Biol, 2022, 58:102530. |
[50] | SUN D, CHEN S, LI S, et al. Enhancement of glycolysis-dependent DNA repair regulated by FOXO1 knockdown via PFKFB3 attenuates hyperglycemia-induced endothelial oxidative stress injury[J]. Redox Biol, 2023, 59:102589. |
[51] |
CARDOSO S, CORREIA S, CARVALHO C, et al. Perspectives on mitochondrial uncoupling proteins-mediated neuroprotection[J]. J Bioenerg Biomembr, 2015, 47(1-2):119-131.
doi: 10.1007/s10863-014-9580-x pmid: 25217852 |
[52] | RANGARAJAN S, LOCY M L, CHANDA D, et al. Mitochondrial uncoupling protein-2 reprograms metabolism to induce oxidative stress and myofibroblast senescence in age-associated lung fibrosis[J]. Aging Cell, 2022, 21(9):e13674. |
[53] | INOUE R, TSUNO T, TOGASHI Y, et al. Uncoupling protein 2 and aldolase B impact insulin release by modulating mitochondrial function and Ca2+ release from the ER[J]. iScience, 2022, 25(7):104603. |
[54] | STANZIONE R, COTUGNO M, FORTE M, et al. Role of Uncoupling Protein 2 Gene Polymorphisms on the Risk of Ischemic Stroke in a Sardinian Population[J]. Life (Basel), 2022, 12(5):721. |
[55] | CADENAS S. Mitochondrial uncoupling, ROS generation and cardioprotection[J]. Biochim Biophys Acta Bioenerg, 2018, 1859(9):940-950. |
[56] | HE Y, WANG X, LIU X, et al. Decreased uncoupling protein 2 expression in aging retinal pigment epithelial cells[J]. Int J Ophthalmol, 2019, 12(3):375-380. |
[57] | BASCUAS T, KROPP M, HARMENING N, et al. Induction and analysis of oxidative stress in sleeping beauty transposon-transfected human retinal pigment epithelial cells[J]. J Vis Exp, 2020(166). |
[58] | BARNSTABLE C J, ZHANG M, TOMBRAN-TINK J. Uncoupling proteins as therapeutic targets for neurodegene-rative diseases[J]. Int J Mol Sci, 2022, 23(10):5672. |
[59] |
LOHO T, VENNA V, SETIABUDY R D, et al. Correlation between vitreous advanced glycation end products, and D-dimer with blood HbA1c levels in proliferative diabetic retinopathy[J]. Acta Med Indones, 2018, 50(2):132-137.
pmid: 29950532 |
[60] | 董一, 万光明, 闫磐石, 等. 醛糖还原酶和晚期糖基化终末产物受体对糖尿病视网膜病变神经元凋亡的影响[J]. 眼科新进展, 2019, 39(08):741-745. |
DONG Y, WAN G M, YAN P S, et al. Effects of aldose reductase and advanced glycation end products receptor on neuronal apoptosis in diabetic retinopathy[J]. Recent Adv Ophthalmol, 2019, 39(08):741-745. | |
[61] |
AMANO S, YAMAGISHI S, INAGAKI Y, et al. Pigment epithelium-derived factor inhibits oxidative stress-induced apoptosis and dysfunction of cultured retinal pericytes[J]. Microvasc Res, 2005, 69(1-2):45-55.
pmid: 15797260 |
[62] | YOKOI M, YAMAGISHI S, SAITO A, et al. Positive association of pigment epithelium-derived factor with total antioxidant capacity in the vitreous fluid of patients with proliferative diabetic retinopathy[J]. Br J Ophthalmol, 2007, 91(7):885-887. |
[63] | 赵春会, 吕红彬, 周琦. 色素上皮衍生因子在DR中的抗氧化应激作用[J]. 国际眼科杂志, 2014, 14(4):657-659. |
ZHAO C H, LV H B, ZHOU Q. Research advances on pigment epithelium derived factor of resisting oxidative stress in diabetic retinopathy[J]. Int Eye Sci, 2014, 14(4):657-659. | |
[64] | HE Y, LEUNG K W, REN Y, et al. PEDF improves mitochondrial function in RPE cells during oxidative stress[J]. Invest Ophthalmol Vis Sci, 2014, 55(10):6742-6755. |
[65] | HO T C, YANG Y C, CHENG H C, et al. Pigment epithelium-derived factor protects retinal pigment epithelium from oxidant-mediated barrier dysfunction[J]. Biochem Biophys Res Commun, 2006, 342(2):372-378. |
[66] | SUBRAMANIAN P, MENDEZ E F, BECERRA S P. A novel inhibitor of 5-lipoxygenase (5-lox) prevents oxidative stress-induced cell death of retinal pigment epithelium (RPE) cells[J]. Invest Ophthalmol Vis Sci, 2016, 57(11):4581-4588. |
[67] | KIM J Y, PARK S, PARK S H, et al. Overexpression of pigment epithelium-derived factor in placenta-derived mesenchymal stem cells promotes mitochondrial biogene-sis in retinal cells[J]. Lab Invest, 2021, 101(1):51-69. |
[68] |
SINHA G. Doubt cast on inflammation's stop signals[J]. Science, 2022, 376(6593):565-566.
doi: 10.1126/science.abq8310 pmid: 35536895 |
[69] | BROOK N, BROOK E, DHARMARAJAN A, et al. The role of pigment epithelium-derived factor in protecting against cellular stress[J]. Free Radic Res, 2019, 53(11-12):1166-1180. |
[70] | KAUR G, SINGH N K. The role of inflammation in retinal neurodegeneration and degenerative diseases[J]. Int J Mol Sci, 2022, 23(1):386. |
[71] | SOTO I, KREBS M P, REAGAN A M, et al. Vascular inflammation risk factors in retinal disease[J]. Annu rev vis sci, 2019, 5(1):99-122. |
[72] | 王楠楠, 童晔玲, 刘霞, 等. 基于NF-κB信号通路的高通量药物筛选细胞炎症模型的建立[J]. 中国现代应用药学, 2019, 36(4):397-402. |
WANG N N, TONG Y L, LIU X, et al. Establishment of a high-throughput drug screening cell inflammatory model based on NF-κB signaling pathway[J]. Chin J Mod Appl Pharm, 2019, 36(4):397-402. | |
[73] | WANG Y, TAO J, JIANG M, et al. Apocynin ameliorates diabetic retinopathy in rats: Involvement of TLR4/NF-kappaB signaling pathway[J]. Int Immunopharmacol, 2019, 73:49-56. |
[74] | 薛晓彤, 曹明芳. NF-κB在糖尿病视网膜病变中的研究进展[J]. 中医临床研究, 2020, 12(7):146-148. |
XUE X T, CAO M F. A review on NF-kappa B in diabetic retinopathy[J]. Clin J Chin Med, 2020, 12(7):146-148. | |
[75] |
SEMERARO F, MORESCALCHI F, CANCARINI A, et al. Diabetic retinopathy, a vascular and inflammatory disease: Therapeutic implications[J]. Diabetes Metab, 2019, 45(6):517-527.
doi: S1262-3636(19)30062-X pmid: 31005756 |
[76] |
NAKASHIMA S, MATSUI T, YAMAGISHI S. Pigment epithelium-derived factor (PEDF) blocks high glucose-induced inflammatory reactions in endothelial cells through its anti-oxidative properties[J]. Int J Cardiol, 2013, 168(3):3004-3006.
doi: 10.1016/j.ijcard.2013.04.003 pmid: 23706320 |
[77] | 毕欢丽, 李艳, 张杰, 等. 色素上皮衍生因子对高糖状态大鼠视网膜Müller细胞NF-κB表达的影响[J]. 山东大学学报(医学版), 2014(10):40-44. |
BI H L, LI Y, ZHANG J, et al. Effect of PEDF on the expression of NF-κB on high glucose-stimulated rat retinal Müller cells[J]. J Shandong Univ(Health Sci), 2014, 52(10):40-44. | |
[78] | DONG Y, WAN G, YAN P, et al. Fabrication of resveratrol coated gold nanoparticles and investigation of their effect on diabetic retinopathy in streptozotocin induced diabetic rats[J]. J Photochem Photobiol B, 2019, 195:51-57. |
[79] |
SPENCER B G, ESTEVEZ J J, LIU E, et al. Pericytes, inflammation, and diabetic retinopathy[J]. Inflammopharmacology, 2020, 28(3):697-709.
doi: 10.1007/s10787-019-00647-9 pmid: 31612299 |
[80] | FORRESTER J V, KUFFOVA L, DELIBEGOVIC M. The role of inflammation in diabetic retinopathy[J]. Front Immunol, 2020, 11:583687. |
[81] |
YAMAGISHI S, MATSUI T, NAKAMURA K, et al. Pigment epithelium-derived factor (PEDF) prevents diabetes- or advanced glycation end products (AGE)-elicited retinal leukostasis[J]. Microvasc Res, 2006, 72(1-2):86-90.
pmid: 16797605 |
[82] |
MATSUOKA M, OGATA N, MINAMINO K, et al. Leukostasis and pigment epithelium-derived factor in rat models of diabetic retinopathy[J]. Mol Vis, 2007, 13:1058-1065.
pmid: 17653050 |
[83] | LE THI P, TRAN D L, PARK K M, et al. Biocatalytic nitric oxide generating hydrogels with enhanced anti-inflammatory, cell migration, and angiogenic capabilities for wound healing applications[J]. J Mater Chem B, 2024, 12(6):1538-1549. |
[84] | YAMAGISHI S, MATSUI T, NAKAMURA K, et al. Pigment epithelium-derived factor (PEDF) inhibits angiotensin Ⅱ-induced smooth muscle cell proliferation through its anti-oxidative properties[J]. Protein Pept Lett, 2007, 14(6):615-617. |
[85] |
YAMAGISHI S I, MATSUI T. Pigment epithelium-derived factor: a novel therapeutic target for cardiometabolic diseases and related complications[J]. Curr Med Chem, 2018, 25(13):1480.
doi: 10.2174/0929867324666170608103140 pmid: 28595552 |
[86] | WANG Y, SUBRAMANIAN P, SHEN D, et al. Pigment epithelium-derived factor reduces apoptosis and pro-inflammatory cytokine gene expression in a murine model of focal retinal degeneration[J]. ASN Neuro, 2013, 5(5):e00126. |
[87] | SUN M H, HO T C, YEH S I, et al. Short peptides derived from pigment epithelium-derived factor attenuate retinal ischemia reperfusion injury through inhibition of apoptosis and inflammatory response in rats[J]. Exp Eye Res, 2024, 238:109743. |
[88] | YUN J H, KOH Y J, JEONG H S, et al. Propranolol increases vascular permeability through pericyte apoptosis and exacerbates oxygen-induced retinopathy[J]. Biochem Biophys Res Commun, 2018, 503(4):2792-2799. |
[89] | SEO E J, CHOI J A, KOH J Y, et al. Aflibercept ameliorates retinal pericyte loss and restores perfusion in streptozotocin-induced diabetic mice[J]. BMJ Open Diabetes Res Care, 2020, 8(1):e001278. |
[90] | YUN J H, JEONG H S, KIM K J, et al. β‐Adrenergic receptor agonists attenuate pericyte loss in diabetic retinas through Akt activation[J]. FASEB J, 2018, 32(5):2324-2338. |
[91] | 侯佳, 王晋芬. 色素上皮衍生因子对高糖中小鼠视网膜毛细血管周细胞凋亡的影响[J]. 中国药物与临床, 2017, 17(2):175-178. |
HOU J, WANG J F. Effect of pigment epithelium derived factor on apoptosis of retinal capillary pericytes in mice with high glucose[J]. Chin Remedies Clin, 2017, 17(2):175-178. | |
[92] | 贾凡, 韩新红, 栾莉, 等. 探究PEDF-MSCs对糖尿病大鼠视网膜神经节细胞凋亡的影响[J]. 潍坊医学院学报, 2019, 41(5):334-337. |
JIA F, HAN X H, LUAN L, et al. Effects of PEDF-MSCs on apoptosis of retinal ganglion cell in diabetic rats[J]. Acta Acad Med Weifang, 2019, 41(5):334-337. | |
[93] | WANG Y, LU Q, GAO S, et al. Pigment epithelium-derived factor regulates glutamine synthetase and L-glutamate/L-aspartate transporter in retinas with oxygen-induced retinopathy[J]. Curr Eye Res, 2015, 40(12):1232-1244. |
[94] | ZWANZIG A, MENG J, MÜLLER H, et al. Neuroprotective effects of glial mediators in interactions between retinal neurons and Müller cells[J]. Exp Eye Res, 2021, 209:108689. |
[95] |
EICHLER W, SAVKOVIĆ-CVIJIĆ H, BÜRGER S, et al. Müller cell-derived PEDF mediates neuroprotection via STAT3 activation[J]. Cell Physiol Biochem, 2017, 44(4):1411-1424.
doi: 10.1159/000485537 pmid: 29186716 |
[96] |
CAMPOCHIARO P A, NGUYEN Q D, SHAH S M, et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial[J]. Hum Gene Ther, 2006, 17(2):167-176.
doi: 10.1089/hum.2006.17.167 pmid: 16454650 |
[97] |
CALADO S M, DIAZ-CORRALES F, SILVA G A. pEPito-driven PEDF expression ameliorates diabetic retinopathy hallmarks[J]. Hum Gene Ther Methods, 2016, 27(2):79-86.
doi: 10.1089/hgtb.2015.169 pmid: 26942449 |
[98] | LUO Y, LI C. Advances in research related to microRNA for diabetic retinopathy[J]. J Diabetes Res, 2024, 2024:8520489. |
[99] | 田丽娜, 牛奔, 朱恩仙, 等. 2型糖尿病心脏自主神经病变合并视网膜病变和肾病的临床研究[J]. 重庆医科大学学报, 2024, 49(1):18-23. |
TIAN L N, NIU B, ZHU E X, et al. A clinical study of cardiac autonomic neuropathy with retinopathy and nephropathy in patients with type 2 diabetes mellitus[J]. J Chongqing Med Univ, 2024, 49(1):18-23. | |
[100] | 焦聪, 侯超, 李蓉. TyG 指数与2型糖尿病非增殖性视网膜病变的相关[J]. 中国临床研究, 2023, 36(5):656-660. |
JIAO C, HOU C, LI R. Correlation between TyG index and non-proliferative retinopathy in type 2 diabetes mellitus[J]. Chin J Clin Res, 2023, 36(5):656-660. |
[1] | 张琼, 吴彦霖, 胡起维, 张泽伟, 黄守约. 光学相干断层扫描血管成像参数诊断非增殖性糖尿病视网膜病变的价值分析[J]. 诊断学理论与实践, 2024, 23(01): 67-76. |
[2] | 金娴, 梁永杰,. 高密度脂蛋白抗炎作用的新进展[J]. 诊断学理论与实践, 2011, 10(04): 380-383. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||