诊断学理论与实践 ›› 2025, Vol. 24 ›› Issue (02): 220-225.doi: 10.16150/j.1671-2870.2025.02.014
收稿日期:
2025-01-03
接受日期:
2025-03-09
出版日期:
2025-04-25
发布日期:
2025-07-11
通讯作者:
李彪 E-mail:lb10363@rjh.com.cn基金资助:
JIA Yingqi, ZHANG Min, LI Biao()
Received:
2025-01-03
Accepted:
2025-03-09
Published:
2025-04-25
Online:
2025-07-11
摘要:
成纤维细胞活化蛋白(fibroblast activation protein, FAP)作为一种特异性表达于活化心肌成纤维细胞(cardiac fibroblasts, CFs)表面的Ⅱ型跨膜丝氨酸蛋白酶,在心肌损伤、炎症及纤维化过程中,通过降解细胞外基质和激活转化生长因子β(transforming growth factor-β, TGF-β)等关键通路,驱动心肌间质重塑及胶原沉积,成为心肌纤维化发展的核心效应靶点。FAP仅在活化的CFs中显著上调,在但正常心肌组织中很少表达,这为心肌疾病的无创精准诊断提供了分子基础。近年来,放射性核素标记的FAP抑制剂(FAP inhibitor, FAPI)正电子发射断层扫描(positron emission tomography, PET)技术凭借其无创性、高靶向性和定量评估能力,可在分子层面早期捕获微纤维化信号,突破了传统影像(如心脏磁共振)对结构性改变的依赖,在活动性心肌纤维化的动态评估中展现出独特优势,为心脏疾病的早期诊断、病理机制探索及预后评估提供了新路径。当前研究证实,FAPI-PET在多种心脏疾病中具有重要应用价值,如在急性心肌梗死后左心室重构中动态监测梗死周边区FAP活性,可预测心室扩张及不良重构的趋势;针对放化疗及免疫治疗心脏毒性导致的亚临床纤维化实现早期预警;对于心脏淀粉样变性,可帮助早期量化评估心肌纤维化负荷,并协助评估不同亚型的危险分层和预后;在肺动脉高压及右心室重构中,可全面评估弥漫性纤维化,并显示疾病严重程度;针对不同亚型心肌病(如肥厚型/扩张型等),通过分析纤维化空间分布辅助临床表型的判断;还可评估房颤导管消融术后心房损伤修复反应,以预测心律失常复发风险。本文综述FAPI-PET检查在心脏疾病诊断中应用的国内外研究进展,展望其应用潜力与未来挑战。
中图分类号:
贾迎起, 张敏, 李彪. 放射性核素标记的成纤维细胞活化蛋白抑制剂正电子发射断层扫描在心脏疾病诊断中的研究进展[J]. 诊断学理论与实践, 2025, 24(02): 220-225.
JIA Yingqi, ZHANG Min, LI Biao. Research progress on positron emission tomography using radionuclide-labeled fibroblast activation protein inhibitor in diagnosis of cardiac diseases[J]. Journal of Diagnostics Concepts & Practice, 2025, 24(02): 220-225.
[1] | VARASTEH Z, MOHANTA S, ROBU S, et al. Molecular imaging of fibroblast activity after myocardial infarction using a 68Ga-labeled fibroblast activation protein inhibitor, FAPI-04[J]. J Nucl Med,2019,60(12):1743-1749. |
[2] |
NAGARAJU C K, DRIES E, POPOVIC N, et al. Global fibroblast activation throughout the left ventricle but localized fibrosis after myocardial infarction[J]. Sci Rep,2017,7(1):10801.
doi: 10.1038/s41598-017-09790-1 pmid: 28883544 |
[3] |
HUMEREZ C, FRANGOGIANNIS N G. Fibroblasts in the infarcted, remodeling, and failing heart[J]. JACC Basic Transl Sci,2019,4(3):449-467.
doi: 10.1016/j.jacbts.2019.02.006 pmid: 31312768 |
[4] | VAN HOUT G P, ARSLAN F, PASTERKAMP G, et al. Targeting danger-associated molecular patterns after myocardial infarction[J]. Expert Opin Ther Targets,2016,20(2):223-239. |
[5] |
BLANKESTEIJN W M. Has the search for a marker of activated fibroblasts finally come to an end?[J]. J Mol Cell Cardiol,2015,88:120-123.
doi: 10.1016/j.yjmcc.2015.10.005 pmid: 26454160 |
[6] | ROG-ZIELINSKA E A, NORRIS R A, KOHL P, et al. The living scar—cardiac fibroblasts and the injured heart[J]. Trends Mol Med,2016,22(2):99-114. |
[7] | KESSLER L, KUPUSOVIC J, FERDINANDUS J, et al. Visualization of fibroblast activation after myocardial infarction using 68Ga-FAPI PET[J]. Clin Nucl Med,2021,46(10):807-813. |
[8] | DIEKMANN J, KOENIG T, THACKERAY J T, et al. Cardiac fibroblast activation in patients early after acute myocardial infarction: integration with MR tissue characteri-zation and subsequent functional outcome[J]. J Nucl Med,2022,63(9):1415-1423. |
[9] | SIEBERMAIR J, KÖHLER M I, KUPUSOVIC J, et al. Cardiac fibroblast activation detected by Ga-68 FAPI PET imaging as a potential novel biomarker of cardiac injury/remodeling[J]. J Nucl Cardiol,2021,28(3):812-821. |
[10] | XIE B, WANG J, XI X Y, et al. Fibroblast activation protein imaging in reperfused ST-elevation myocardial infarction: comparison with cardiac magnetic resonance imaging[J]. Eur J Nucl Med Mol Imaging,2022,49(8):2786-2797. |
[11] | ZHANG M, QUAN W, ZHU T, et al. [68Ga]Ga-DOTA-FAPI-04 PET/MR in patients with acute myocardial infarction: potential role of predicting left ventricular remodeling[J]. Eur J Nucl Med Mol Imaging,2023,50(3):839-848. |
[12] |
SHARMA P, SINGH S S, GAYANA S. Fibroblast activation protein inhibitor PET/CT: a promising molecular imaging tool[J]. Clin Nucl Med,2021,46(3):e141-e150.
doi: 10.1097/RLU.0000000000003489 pmid: 33351507 |
[13] |
PRABHU S D, FRANGOGIANNIS N G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis[J]. Circ Res,2016,119(1):91-112.
doi: 10.1161/CIRCRESAHA.116.303577 pmid: 27340270 |
[14] | IBANEZ B, ALETRAS A H, ARAI A E, et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials: JACC scientific expert panel[J]. J Am Coll Cardiol,2019,74(2):238-256. |
[15] |
VAZIR A, FOX K, WESTABY J, et al. Can we remove scar and fibrosis from adult human myocardium?[J]. Eur Heart J,2019,40(12):960-966.
doi: 10.1093/eurheartj/ehy503 pmid: 30203057 |
[16] | HOFFMANN D B, FRACCAROLLO D, GALUPPO P, et al. Genetic ablation of fibroblast activation protein alpha attenuates left ventricular dilation after myocardial infarction[J]. PLoS One,2021,16(3):e0248196. |
[17] |
TAPIO S. Pathology and biology of radiation-induced cardiac disease[J]. J Radiat Res,2016,57(5):439-448.
pmid: 27422929 |
[18] | CHANG H M, MOUDGIL R, SCARABELLI T, et al. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: Part 1[J]. J Am Coll Cardiol,2017,70(20):2536-2551. |
[19] |
GABRIELS K, HOVING S, SEEMANN I, et al. Local heart irradiation of ApoE(-/-) mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis[J]. Radiother Oncol,2012,105(3):358-364.
doi: 10.1016/j.radonc.2012.08.002 pmid: 22959484 |
[20] | HECKMANN M B, REINHARDT F, FINKE D, et al. Relationship between cardiac fibroblast activation protein activity by positron emission tomography and cardiovascular disease[J]. Circ Cardiovasc Imaging,2020,13(9):e010628. |
[21] | JOHNSON D B, BALKO J M, COMPTON M L, et al. Fulminant myocarditis with combination immune checkpoint blockade[J]. N Engl J Med,2016,375(18):1749-1755. |
[22] | NIU N, HUO L, ZHANG S, et al. Immune checkpoint inhibitor-associated cardiotoxicity detected by 68Ga-DOTATATE PET/CT and 68Ga-FAPI PET/CT[J]. Eur Heart J Cardiovasc Imaging,2022,23(3):e123. |
[23] |
WANG H, WEI J, ZHENG Q, et al. Radiation-induced heart disease: a review of classification, mechanism and prevention[J]. Int J Biol Sci,2019,15(10):2128-2138.
doi: 10.7150/ijbs.35460 pmid: 31592122 |
[24] | FONTANA M, COROVIC A, SCULLY P, et al. Myocardial amyloidosis: the exemplar interstitial disease[J]. JACC Cardiovasc Imaging,2019,12(11 Pt 2):2345-2356. |
[25] |
GROGAN M, DISPENZIERI A, GERTZ M A. Light-chain cardiac amyloidosis: strategies to promote early diagnosis and cardiac response[J]. Heart,2017,103(14):1065-1072.
doi: 10.1136/heartjnl-2016-310704 pmid: 28456755 |
[26] |
RUBERG F L, BERK J L. Transthyretin (TTR) cardiac amyloidosis[J]. Circulation,2012,126(10):1286-1300.
doi: 10.1161/CIRCULATIONAHA.111.078915 pmid: 22949539 |
[27] |
FALK R H, QUARTA C C. Echocardiography in cardiac amyloidosis[J]. Heart Fail Rev,2015,20(2):125-131.
doi: 10.1007/s10741-014-9466-3 pmid: 25597027 |
[28] | MARTINEZ-NAHARRO A, TREIBEL T A, ABDEL-GADIR A, et al. Magnetic resonance in transthyretin cardiac amyloidosis[J]. J Am Coll Cardiol,2017,70(4):466-477. |
[29] | YANG M, ARSANJANI R, ROARKE M C. Advanced nuclear medicine and molecular imaging in the diagnosis of cardiomyopathy[J]. Am J Roentgenol,2020,215(5):1208-1217. |
[30] | YAMAMOTO Y, ONOGUCHI M, HARAMOTO M, et al. Novel method for quantitative evaluation of cardiac amyloidosis using 201TlCl and 99mTc-PYP SPECT[J]. Ann Nucl Med,2012,26(8):634-643. |
[31] | WANG X, GUO Y, GAO Y, et al. Feasibility of 68Ga-labeled fibroblast activation protein inhibitor PET/CT in light-chain cardiac amyloidosis[J]. JACC Cardiovasc Imaging,2022,15(11):1960-1970. |
[32] | DORBALA S. Fibroblast activation: a novel mechanism of heart failure in light chain cardiac amyloidosis?[J]. JACC Cardiovasc Imaging,2022,15(11):1971-1973. |
[33] | GUO W, CHEN H. 68Ga FAPI PET/MRI in cardiac amyloidosis[J]. Radiology,2022,303(1):51. |
[34] |
CAHILL T J, ASHRAFIAN H, WATKINS H. Genetic cardiomyopathies causing heart failure[J]. Circ Res,2013,113(6):660-675.
doi: 10.1161/CIRCRESAHA.113.300282 pmid: 23989711 |
[35] | CHALHOUB S M, LOH P, HAUER R N, et al. The role of connexin40 in atrial fibrillation[J]. Cardiovasc Res,2009,84(1):15-23. |
[36] |
MORAVSKY G, OFEK E, RAKOWSKI H, et al. Myocardial fibrosis in hypertrophic cardiomyopathy: accurate reflection of histopathological findings by CMR[J]. JACC Cardiovasc Imaging,2013,6(5):587-596.
doi: 10.1016/j.jcmg.2012.09.018 pmid: 23582356 |
[37] |
ALMAAS V M, HAUGAA K H, STRØM E H, et al. Noninvasive assessment of myocardial fibrosis in patients with obstructive hypertrophic cardiomyopathy[J]. Heart,2014,100(8):631-638.
doi: 10.1136/heartjnl-2013-304923 pmid: 24368281 |
[38] | ZHANG Y, DONG Z, WANG L, et al. Functional significance of myocardial activity at 18F-FAPI PET/CT in hypertrophic cardiomyopathy identified by cardiac magnetic resonance feature-tracking strain analysis[J]. Eur J Nucl Med Mol Imaging,2023,51(1):110-122. |
[39] | SHI X, LIN X, HUO L, et al. Cardiac fibroblast activation in dilated cardiomyopathy detected by positron emission tomography[J]. J Nucl Cardiol,2022,29(2):881-884. |
[40] | LIN K, CHEN X, XUE Q, et al. Diffuse uptake of [68Ga]Ga-FAPI in the left heart in a patient with hypertensive heart disease by PET/CT[J]. J Nucl Cardiol,2022,29(6):3596-3598. |
[41] | HO C Y, LOPEZ B, COELHO-FILHO O R, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy[J]. N Engl J Med,2010,363(6):552-563. |
[42] | WANG L, WANG Y, WANG J, et al. Myocardial activity at 18F-FAPI PET/CT and risk for sudden cardiac death in hypertrophic cardiomyopathy[J]. Radiology,2023,306(2):e221052. |
[43] | AGHAJANIAN H, KIMURA T, RURIK J G, et al. Targe-ting cardiac fibrosis with engineered T cells[J]. Nature,2019,573(7774):430-433. |
[44] | WANG J, HUO L, LIN X, et al. Molecular imaging of fibroblast activation in multiple non-ischemic cardiomyo-pathies[J]. EJNMMI Res,2023,13(1):39. |
[45] | ZENG X, ZHAO R, WU Z, et al. [18F]-FAPI-42 PET/CT assessment of progressive right ventricle fibrosis under pressure overload[J]. Respir Res,2023,24(1):270. |
[46] | XING H Q, GONG J N, CHEN B X, et al. Comparison of 68Ga-FAPI imaging and cardiac magnetic resonance in detection of myocardial fibrosis in a patient with chronic thromboembolic pulmonary hypertension[J]. J Nucl Cardiol,2022,29(5):2728-2730. |
[47] |
PATEL R B, LI E, BENEFIELD B C, et al. Diffuse right ventricular fibrosis in heart failure with preserved ejection fraction and pulmonary hypertension[J]. ESC Heart Fail,2020,7(1):253-263.
doi: 10.1002/ehf2.12565 pmid: 31903694 |
[48] | WANG L, ZHANG Z, ZHAO Z, et al. 68Ga-FAPI right heart uptake in a patient with idiopathic pulmonary arterial hypertension[J]. J Nucl Cardiol,2022,29(3):1475-1477. |
[51] | CHEN B X, XING H Q, GONG J N, et al. Imaging of cardiac fibroblast activation in patients with chronic thromboembolic pulmonary hypertension[J]. Eur J Nucl Med Mol Imaging,2022,49(4):1211-1222. |
[52] | KUPUSOVIC J, KESSLER L, NEKOLLA S G, et al. Visua-lization of thermal damage using 68Ga-FAPI-PET/CT after pulmonary vein isolation[J]. Eur J Nucl Med Mol Imaging,2022,49(5):1553-1559. |
[53] | LINHART M, ALARCON F, BORRÀS R, et al. Delayed gadolinium enhancement magnetic resonance imaging detected anatomic gap length in wide circumferential pulmonary vein ablation lesions is associated with recurrence of atrial fibrillation[J]. Circ Arrhythm Electrophysiol,2018,11(12):e006659. |
[54] |
HARRISON J L, SOHNS C, LINTON N W, et al. Repeat left atrial catheter ablation: cardiac magnetic resonance prediction of endocardial voltage and gaps in ablation lesion sets[J]. Circ Arrhythm Electrophysiol,2015,8(2):270-278.
doi: 10.1161/CIRCEP.114.002066 pmid: 25593109 |
[55] | KUCK K H, HOFFMANN B A, ERNST S, et al. Impact of complete versus incomplete circumferential lines around the pulmonary veins during catheter ablation of paroxysmal atrial fibrillation: results from the Gap-Atrial Fibrillation-German Atrial Fibrillation Competence Network 1 Trial[J]. Circ Arrhythm Electrophysiol,2016,9(1):e003337. |
[56] | KUPUSOVIC J, KESSLER L, BRUNS F, et al. Visualization of fibroblast activation using 68Ga-FAPI PET/CT after pulmonary vein isolation with pulsed field compared with cryoballoon ablation[J]. J Nucl Cardiol,2023,30(5):2018-2028. |
[49] | GONG J N, CHEN B X, XING H Q, et al. Pulmonary artery imaging with 68Ga-FAPI-04 in patients with chronic thromboembolic pulmonary hypertension[J]. J Nucl Cardiol,2023,30(3):1166-1172. |
[50] | GU Y, HAN K, ZHANG Z, et al. 68Ga-FAPI PET/CT for molecular assessment of fibroblast activation in right heart in pulmonary arterial hypertension: a single-center, pilot study[J]. J Nucl Cardiol,2023,30(2):495-503. |
[1] | 黄少华, 梁宗辉, 童欢, 管雪妮, 郭瑛, 张雁, 曹宾, 孙育民. 心脏磁共振评估强直性肌营养不良1型患者心肌纤维化的临床价值[J]. 诊断学理论与实践, 2021, 20(04): 362-367. |
[2] | 周桑, 沈茜, 秦永文. 肌钙蛋白I自身抗体在心肌梗死诊断中的临床意义[J]. 诊断学理论与实践, 2017, 16(01): 120-122. |
[3] | 席锐, 顾刚, 陶蓉,. 经皮冠状动脉介入治疗患者围手术期TnI升高的相关因素分析[J]. 诊断学理论与实践, 2013, 12(02): 175-178. |
[4] | 陈瑞珍, 解玉泉,. 病毒性心肌炎向扩张型心肌病演变的免疫学机制[J]. 诊断学理论与实践, 2011, 10(05): 414-417. |
[5] | 陆秋芬, 许之民,. 急性病毒性心肌炎C反应蛋白的变化及与心肌损伤指标相关性研究[J]. 诊断学理论与实践, 2007, 6(02): 134-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||