[1] Alzheimer's Association. 2016 Alzheimer's disease facts and figures[J]. Alzheimers Dement,2016,12(4):459-509.
[2] Brookmeyer R, Johnson E, Ziegler-Graham K, et al.Forecasting the global burden of Alzheimer's disease[J]. Alzheimers Dement,2007,3(3):186-191.
[3] Alzheimer's Association. FDA-approved treatments for Alzheimer's[R/OL].2017[2018-07-30]https://www.alz.org/dementia/downloads/topicsheet_treatments.pdf.
[4] Dubois B, Feldman HH, Jacova C, et al.Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria[J]. Lancet Neurol,2014,13(6):614-629.
[5] Carrillo MC, Dean RA, Nicolas F, et al.Revisiting the framework of the National Institute on Aging-Alzheimer's Association diagnostic criteria[J]. Alzheimers Dement,2013,9(5):594-601.
[6] Serrano-Pozo A, Frosch MP, Masliah E, et al.Neuropathological alterations in Alzheimer disease[J]. Cold Spring Harb Perspect Med,2011,1(1):a006189.
[7] Baron JC, Chételat G, Desgranges B, et al.In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease[J]. Neuroimage,2001,14(2):298-309.
[8] Ishii K, Kawachi T, Sasaki H, et al.Voxel-based morphometric comparison between early- and late-onset mild Alzheimer's disease and assessment of diagnostic performance of z score images[J]. AJNR Am J Neuroradiol,2005,26(2):333-340.
[9] He Y, Wang L, Zang Y, et al.Regional coherence changes in the early stages of Alzheimer's disease: a combined structural and resting-state functional MRI study[J]. Neuroimage,2007,35(2):488-500.
[10] Wang K, Liang M, Wang L, et al.Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study[J]. Hum Brain Mapp,2007,28(10):967-978.
[11] Medina D, DeToledo-Morrell L, Urresta F, et al. White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study[J]. Neurobiol Aging,2006, 27(5):663-672.
[12] Rose SE, McMahon KL, Janke AL, et al. Diffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairment[J]. J Neurol Neurosurg Psychiatry,2006,77(10):1122-1128.
[13] Rathore S, Habes M, Iftikhar MA, et al.A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages[J]. Neuroimage,2017,155:530-548.
[14] Klöppel S, Stonnington CM, Chu C, et al.Automatic classification of MR scans in Alzheimer's disease[J]. Brain,2008,131(Pt 3):681-689.
[15] Möller C, Pijnenburg YA, van der Flier WM, et al. Alzheimer Disease and Behavioral Variant Frontotemporal Dementia: Automatic Classification Based on Cortical Atrophy for Single-Subject Diagnosis[J]. Radiology,2016, 279(3):838-848.
[16] Li S, Yuan X, Pu F, et al.Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients[J]. J Neurosci,2014,34(32):10541-10553.
[17] Salvatore C, Cerasa A, Battista P, et al.Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach[J]. Front Neurosci,2015,9:307.
[18] Liu X, Tosun D, Weiner MW, et al.Locally linear embedding (LLE) for MRI based Alzheimer's disease classification[J]. Neuroimage,2013,83:148-57.
[19] Beheshti I, Demirel H, Alzheimer′s Disease Neuroima-ging Initiative. Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease[J]. Comput Biol Med,2015,64:208-216.
[20] Magnin B, Mesrob L, Kinkingnéhun S, et al.Support vector machine-based classification of Alzheimer's disea-se from whole-brain anatomical MRI[J]. Neuroradiology,2009,51(2):73-83.
[21] Liu M, Zhang D, Shen D, et al.View-centralized multi-a-tlas classification for Alzheimer's disease diagnosis[J]. Hum Brain Mapp,2015,36(5):1847-1865.
[22] Itamar A, Derek CR, Thomas PK, et al.Deep Machine Learning-A New Frontier in Artificial Intelligence Research[J]. Computational Intelligence Magazine, IEEE,2010,5(4):13-18.
[23] Luo S, Li XC, Li J.Automatic Alzheimer’s Disease Recognition from MRI Data Using Deep Learning Method[J]. JAMP,2017,5(9):1892-1898.
[24] Hosseiniasl E,Keynto R,Elbaz A. Alzheimer's Disease Diagnostics by Adaptation of 3D Convolutional Network[J/OL].2016-10-25[2018-07-30].https://www.researchgate.net/publication/304748302_Alzheimer%27s_Disease_Dia-gnostics_by_Adaptation_of_3D_Convolutional_Network.
[25] Chen G, Ward BD, Xie C, et al.Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging[J]. Radiology,2011,259(1):213-221.
[26] Challis E, Hurley P, Serra L, et al.Gaussian process classification of Alzheimer's disease and mild cognitive impairment from resting-state fMRI[J]. Neuroimage,2015, 112:232-243.
[27] Jie B, Zhang D, Gao W, et al.Integration of network topological and connectivity properties for neuroimaging classification[J]. IEEE Trans Biomed Eng,2014,61(2):576-589.
[28] Khazaee A, Ebrahimzadeh A, Babajani-Feremi A.Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory[J]. Clin Neurophysiol,2015,126(11):2132-2141.
[29] Sarraf S, Tofighi G. Deep Learning-based Pipeline to Recognize Alzheimer′s Disease using fMRI Data[J/OL]. Future Technologies Conference,2016-12-06[2018-07-30].https://ieeexplore.ieee.org/document/7821697/.
[30] Nir TM, Villalon-Reina JE, Prasad G, et al.Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer's disease[J]. Neurobiol Aging,2015,36(Suppl 1):S132-S140.
[31] Wee CY, Yap PT, Li W, et al.Enriched white matter connectivity networks for accurate identification of MCI patients[J]. Neuroimage,2011,54(3):1812-1822.
[32] Dyrba M, Ewers M, Wegrzyn M, et al.Robust automated detection of microstructural white matter degeneration in Alzheimer's disease using machine learning classification of multicenter DTI data[J]. PLoS One,2013,8(5):e64925.
[33] Dyrba M, Grothe M, Kirste T, et al.Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM[J]. Hum Brain Mapp,2015,36(6):2118-2131.
[34] Cui Y, Wen W, Lipnicki DM, et al.Automated detection of amnestic mild cognitive impairment in community-dwelling elderly adults: a combined spatial atrophy and white matter alteration approach[J]. Neuroimage,2012,59(2):1209-1217.
[35] Tang X, Qin Y, Wu J, et al.Shape and diffusion tensor imaging based integrative analysis of the hippocampus and the amygdala in Alzheimer's disease[J]. Magn Reson Imaging,2016,34(8):1087-1099.
[36] Schouten TM, Koini M, de Vos F, et al. Combining anatomical, diffusion, and resting state functional magne-tic resonance imaging for individual classification of mild and moderate Alzheimer's disease[J]. Neuroimage Clin,2016,11:46-51.
[37] Vemuri P, Gunter JL, Senjem ML, et al.Alzheimer′s di-sease diagnosis in individual subjects using structural MR images: validation studies[J]. Neuroimage,2008,39(3):1186-1197.
[38] Zhang Y, Wang S, Dong Z.Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree[J]. Prog Electromagn Res,2014,144(144):171-184.
[39] Zhu X, Suk HI, Shen D.A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis[J]. Neuroimage,2014,100:91-105.
[40] Korolev IO, Symonds LL, Bozoki AC.Predicting Progression from Mild Cognitive Impairment to Alzheimer's Dementia Using Clinical, MRI, and Plasma Biomarkers via Probabilistic Pattern Classification[J]. PLoS One,2016, 11(2):e0138866.
[41] Ritter K, Schumacher J, Weygandt M, et al.Multimodal prediction of conversion to Alzheimer's disease based on incomplete biomarkers[J]. Alzheimers Dement (Amst),2015,1(2):206-215.
[42] Zhang D, Wang Y, Zhou L, et al.Multimodal classification of Alzheimer's disease and mild cognitive impairment[J]. Neuroimage,2011,55(3):856-867.
[43] Zhang D, Shen D, Alzheimer's Disease Neuroimaging Initiative. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease[J]. Neuroimage,2012,59(2):895-907.
[44] Cheng B, Liu M, Zhang D, et al.Domain Transfer Lear-ning for MCI Conversion Prediction[J]. IEEE Trans Biomed Eng,2015,62(7):1805-1817.
[45] Hinrichs C, Singh V, Xu G, et al.Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population[J]. Neuroimage,2011, 55(2):574-589.
[46] Zhang D, Shen D, Alzheimer's Disease Neuroimaging Initiative. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers[J]. PLoS One,2012,7(3):e33182.
[47] Shaffer JL, Petrella JR, Sheldon FC, et al.Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers[J]. Radiology, 2013,266(2):583-591.
[48] Liu F, Wee CY, Chen H, et al.Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification[J]. Neuroimage,2014,84:466-475.
[49] Young J, Modat M, Cardoso MJ, et al.Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment[J]. Neuroimage Clin,2013,2:735-745.
[50] Wang P, Chen K, Yao L, et al.Multimodal Classification of Mild Cognitive Impairment Based on Partial Least Squares[J]. J Alzheimers Dis,2016,54(1):359-371.
[51] Liu X, Chen K, Wu T, et al.Use of multimodality imagi-ng and artificial intelligence for diagnosis and prognosis of early stages of Alzheimer's disease[J]. Transl Res,2018,194:56-67.