诊断学理论与实践 ›› 2018, Vol. 17 ›› Issue (04): 466-470.doi: 10.16150/j.1671-2870.2018.04.023
许晶晶, 张敏鸣
收稿日期:
2018-07-30
出版日期:
2018-08-25
发布日期:
2018-08-25
通讯作者:
张敏鸣 E-mail: zhangminming@zju.edu.cn
基金资助:
Received:
2018-07-30
Online:
2018-08-25
Published:
2018-08-25
中图分类号:
许晶晶, 张敏鸣. 人工智能机器学习方法在阿尔茨海默病中的应用现状[J]. 诊断学理论与实践, 2018, 17(04): 466-470.
[1] Alzheimer's Association. 2016 Alzheimer's disease facts and figures[J]. Alzheimers Dement,2016,12(4):459-509. [2] Brookmeyer R, Johnson E, Ziegler-Graham K, et al.Forecasting the global burden of Alzheimer's disease[J]. Alzheimers Dement,2007,3(3):186-191. [3] Alzheimer's Association. FDA-approved treatments for Alzheimer's[R/OL].2017[2018-07-30]https://www.alz.org/dementia/downloads/topicsheet_treatments.pdf. [4] Dubois B, Feldman HH, Jacova C, et al.Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria[J]. Lancet Neurol,2014,13(6):614-629. [5] Carrillo MC, Dean RA, Nicolas F, et al.Revisiting the framework of the National Institute on Aging-Alzheimer's Association diagnostic criteria[J]. Alzheimers Dement,2013,9(5):594-601. [6] Serrano-Pozo A, Frosch MP, Masliah E, et al.Neuropathological alterations in Alzheimer disease[J]. Cold Spring Harb Perspect Med,2011,1(1):a006189. [7] Baron JC, Chételat G, Desgranges B, et al. [8] Ishii K, Kawachi T, Sasaki H, et al.Voxel-based morphometric comparison between early- and late-onset mild Alzheimer's disease and assessment of diagnostic performance of z score images[J]. AJNR Am J Neuroradiol,2005,26(2):333-340. [9] He Y, Wang L, Zang Y, et al.Regional coherence changes in the early stages of Alzheimer's disease: a combined structural and resting-state functional MRI study[J]. Neuroimage,2007,35(2):488-500. [10] Wang K, Liang M, Wang L, et al.Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study[J]. Hum Brain Mapp,2007,28(10):967-978. [11] Medina D, DeToledo-Morrell L, Urresta F, et al. White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study[J]. Neurobiol Aging,2006, 27(5):663-672. [12] Rose SE, McMahon KL, Janke AL, et al. Diffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairment[J]. J Neurol Neurosurg Psychiatry,2006,77(10):1122-1128. [13] Rathore S, Habes M, Iftikhar MA, et al.A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages[J]. Neuroimage,2017,155:530-548. [14] Klöppel S, Stonnington CM, Chu C, et al.Automatic classification of MR scans in Alzheimer's disease[J]. Brain,2008,131(Pt 3):681-689. [15] Möller C, Pijnenburg YA, van der Flier WM, et al. Alzheimer Disease and Behavioral Variant Frontotemporal Dementia: Automatic Classification Based on Cortical Atrophy for Single-Subject Diagnosis[J]. Radiology,2016, 279(3):838-848. [16] Li S, Yuan X, Pu F, et al.Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients[J]. J Neurosci,2014,34(32):10541-10553. [17] Salvatore C, Cerasa A, Battista P, et al.Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach[J]. Front Neurosci,2015,9:307. [18] Liu X, Tosun D, Weiner MW, et al.Locally linear embedding (LLE) for MRI based Alzheimer's disease classification[J]. Neuroimage,2013,83:148-57. [19] Beheshti I, Demirel H, Alzheimer′s Disease Neuroima-ging Initiative. Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease[J]. Comput Biol Med,2015,64:208-216. [20] Magnin B, Mesrob L, Kinkingnéhun S, et al.Support vector machine-based classification of Alzheimer's disea-se from whole-brain anatomical MRI[J]. Neuroradiology,2009,51(2):73-83. [21] Liu M, Zhang D, Shen D, et al.View-centralized multi-a-tlas classification for Alzheimer's disease diagnosis[J]. Hum Brain Mapp,2015,36(5):1847-1865. [22] Itamar A, Derek CR, Thomas PK, et al.Deep Machine Learning-A New Frontier in Artificial Intelligence Research[J]. Computational Intelligence Magazine, IEEE,2010,5(4):13-18. [23] Luo S, Li XC, Li J.Automatic Alzheimer’s Disease Recognition from MRI Data Using Deep Learning Method[J]. JAMP,2017,5(9):1892-1898. [24] Hosseiniasl E,Keynto R,Elbaz A. Alzheimer's Disease Diagnostics by Adaptation of 3D Convolutional Network[J/OL].2016-10-25[2018-07-30].https://www.researchgate.net/publication/304748302_Alzheimer%27s_Disease_Dia-gnostics_by_Adaptation_of_3D_Convolutional_Network. [25] Chen G, Ward BD, Xie C, et al.Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging[J]. Radiology,2011,259(1):213-221. [26] Challis E, Hurley P, Serra L, et al.Gaussian process classification of Alzheimer's disease and mild cognitive impairment from resting-state fMRI[J]. Neuroimage,2015, 112:232-243. [27] Jie B, Zhang D, Gao W, et al.Integration of network topological and connectivity properties for neuroimaging classification[J]. IEEE Trans Biomed Eng,2014,61(2):576-589. [28] Khazaee A, Ebrahimzadeh A, Babajani-Feremi A.Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory[J]. Clin Neurophysiol,2015,126(11):2132-2141. [29] Sarraf S, Tofighi G. Deep Learning-based Pipeline to Recognize Alzheimer′s Disease using fMRI Data[J/OL]. Future Technologies Conference,2016-12-06[2018-07-30].https://ieeexplore.ieee.org/document/7821697/. [30] Nir TM, Villalon-Reina JE, Prasad G, et al.Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer's disease[J]. Neurobiol Aging,2015,36(Suppl 1):S132-S140. [31] Wee CY, Yap PT, Li W, et al.Enriched white matter connectivity networks for accurate identification of MCI patients[J]. Neuroimage,2011,54(3):1812-1822. [32] Dyrba M, Ewers M, Wegrzyn M, et al.Robust automated detection of microstructural white matter degeneration in Alzheimer's disease using machine learning classification of multicenter DTI data[J]. PLoS One,2013,8(5):e64925. [33] Dyrba M, Grothe M, Kirste T, et al.Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM[J]. Hum Brain Mapp,2015,36(6):2118-2131. [34] Cui Y, Wen W, Lipnicki DM, et al.Automated detection of amnestic mild cognitive impairment in community-dwelling elderly adults: a combined spatial atrophy and white matter alteration approach[J]. Neuroimage,2012,59(2):1209-1217. [35] Tang X, Qin Y, Wu J, et al.Shape and diffusion tensor imaging based integrative analysis of the hippocampus and the amygdala in Alzheimer's disease[J]. Magn Reson Imaging,2016,34(8):1087-1099. [36] Schouten TM, Koini M, de Vos F, et al. Combining anatomical, diffusion, and resting state functional magne-tic resonance imaging for individual classification of mild and moderate Alzheimer's disease[J]. Neuroimage Clin,2016,11:46-51. [37] Vemuri P, Gunter JL, Senjem ML, et al.Alzheimer′s di-sease diagnosis in individual subjects using structural MR images: validation studies[J]. Neuroimage,2008,39(3):1186-1197. [38] Zhang Y, Wang S, Dong Z.Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree[J]. Prog Electromagn Res,2014,144(144):171-184. [39] Zhu X, Suk HI, Shen D.A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis[J]. Neuroimage,2014,100:91-105. [40] Korolev IO, Symonds LL, Bozoki AC.Predicting Progression from Mild Cognitive Impairment to Alzheimer's Dementia Using Clinical, MRI, and Plasma Biomarkers via Probabilistic Pattern Classification[J]. PLoS One,2016, 11(2):e0138866. [41] Ritter K, Schumacher J, Weygandt M, et al.Multimodal prediction of conversion to Alzheimer's disease based on incomplete biomarkers[J]. Alzheimers Dement (Amst),2015,1(2):206-215. [42] Zhang D, Wang Y, Zhou L, et al.Multimodal classification of Alzheimer's disease and mild cognitive impairment[J]. Neuroimage,2011,55(3):856-867. [43] Zhang D, Shen D, Alzheimer's Disease Neuroimaging Initiative. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease[J]. Neuroimage,2012,59(2):895-907. [44] Cheng B, Liu M, Zhang D, et al.Domain Transfer Lear-ning for MCI Conversion Prediction[J]. IEEE Trans Biomed Eng,2015,62(7):1805-1817. [45] Hinrichs C, Singh V, Xu G, et al.Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population[J]. Neuroimage,2011, 55(2):574-589. [46] Zhang D, Shen D, Alzheimer's Disease Neuroimaging Initiative. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers[J]. PLoS One,2012,7(3):e33182. [47] Shaffer JL, Petrella JR, Sheldon FC, et al.Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers[J]. Radiology, 2013,266(2):583-591. [48] Liu F, Wee CY, Chen H, et al.Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification[J]. Neuroimage,2014,84:466-475. [49] Young J, Modat M, Cardoso MJ, et al.Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment[J]. Neuroimage Clin,2013,2:735-745. [50] Wang P, Chen K, Yao L, et al.Multimodal Classification of Mild Cognitive Impairment Based on Partial Least Squares[J]. J Alzheimers Dis,2016,54(1):359-371. [51] Liu X, Chen K, Wu T, et al.Use of multimodality imagi-ng and artificial intelligence for diagnosis and prognosis of early stages of Alzheimer's disease[J]. Transl Res,2018,194:56-67. |
[1] | 何亲羽, 王伟, 陈立芬, 张雪蕾, 董治亚. LHCGR基因突变致家族性男性性早熟2例报告及文献复习[J]. 诊断学理论与实践, 2022, 21(05): 598-605. |
[2] | 武冬冬, 陈玉辉, 刘芳, 刘银红, 蒋景文. 脑小血管疾病合并中枢神经系统退行性疾病机制的研究进展[J]. 诊断学理论与实践, 2022, 21(05): 644-649. |
[3] | 陈志敏, 何浩岚. 艾滋病合并马尔尼菲篮状菌病的诊治现状[J]. 诊断学理论与实践, 2022, 21(04): 425-430. |
[4] | 沈银忠. 《人类免疫缺陷病毒感染/艾滋病合并结核分枝杆菌感染诊治专家共识》解读[J]. 诊断学理论与实践, 2022, 21(04): 431-436. |
[5] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[6] | 何新, 陈慧, 冯炜炜. 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022, 21(04): 541-546. |
[7] | 徐子真, 李擎天, 刘湘帆, 李莉, 李惠, 王也飞, 吴洁敏, 陈宁, 梁璆荔, 陈松立, 戴健敏, 宋珍, 丁磊. 实验诊断学在线课程的建立和实践[J]. 诊断学理论与实践, 2022, 21(04): 547-550. |
[8] | 黄娟, 朱晓雷, 李晓, 陈克敏, 严福华, 徐学勤. 血氧水平依赖磁共振成像评估早期慢性肾病肾缺氧的研究[J]. 诊断学理论与实践, 2022, 21(03): 385-389. |
[9] | 赵然, 詹维伟, 侯怡卿. 计算机辅助诊断系统辅助超声诊断甲状腺弥漫性病变合并结节良恶性的应用价值[J]. 诊断学理论与实践, 2022, 21(03): 390-394. |
[10] | 郭业兵, 郑金峰. 阴道壁胃肠道外间质瘤一例报道并文献复习[J]. 诊断学理论与实践, 2022, 21(03): 405-407. |
[11] | 王刚, 陈生弟. 神经病学的诊断:起源、发展及挑战[J]. 诊断学理论与实践, 2022, 21(01): 1-4. |
[12] | 唐静仪, 余群, 刘军. 结合人工智能的结构影像分析对阿尔茨海默病的早期预测及精准诊断研究进展[J]. 诊断学理论与实践, 2022, 21(01): 12-17. |
[13] | 李建平, 任汝静, 王刚. 阿尔茨海默病的临床诊治进展[J]. 诊断学理论与实践, 2022, 21(01): 18-21. |
[14] | 付丛会, 徐英, 苏巍, 文静, 刘志芳, 朱倩, 张静怡, 熊泽民, 陈兰兰, 贾杰. 新型冠状病毒性肺炎疫情封闭管理期间正念减压疗法对阿尔茨海默病患者情绪障碍及睡眠状况的影响分析[J]. 诊断学理论与实践, 2022, 21(01): 46-51. |
[15] | 魏文石. 直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 5-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||