倪瀚文, 吴立群 . 外泌体在心肌缺血及房颤诊治中的应用前景研究进展[J]. 诊断学理论与实践, 2020 , 19(02) : 199 -202 . DOI: 10.16150/j.1671-2870.2020.02.020
[1] | Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication[J]. Curr Opin Cell Biol, 2009, 21(4): 575-581. |
[2] | Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway[J]. Nat Cell Biol, 2010, 12(1):19-30. |
[3] | Turturici G, Tinnirello R, Sconzo G, et al. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages[J]. Am J Physiol Cell Physiol, 2014, 306(7):C621-633. |
[4] | Dougherty JA, Mergaye M, Kumar N, et al. Potential role of exosomes in mending a broken heart: Nanoshuttles propelling future clinical therapeutics forward[J]. Stem Cells Int, 2017, 2017:5785436. |
[5] | Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges[J]. Acta Pharm Sin B, 2016, 6(4):287-296. |
[6] | Beer L, Zimmermann M, Mitterbauer A, et al. Analysis of the secretome of apoptotic peripheral blood mononuclear cells: Impact of released proteins and exosomes for tissue regeneration[J]. Sci Rep, 2015, 5:16662. |
[7] | Malik ZA, Kott KS, Poe AJ, et al. Cardiac myocyte exosomes: Stability, HSP60, and proteomics[J]. Am J Physiol Heart Circ Physiol, 2013, 304(7):H954-965. |
[8] | Yu X, Deng L, Wang D, et al. Mechanism of TNF-α autocrine effects in hypoxic cardiomyocytes: Initiated by hypoxia inducible factor 1α, presented by exosomes[J]. J Mol Cell Cardiol, 2012, 53(6):848-857. |
[9] | Yang Y, Li Y, Chen X, et al. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia[J]. J Mol Med (Berl), 2016, 94(6): 711-724. |
[10] | Nie X, Fan J, Li H, et al. miR-217 promotes cardiac hypertrophy and dysfunction by targeting PTEN[J]. Mol Ther Nucleic Acids, 2018, 12:254-266. |
[11] | Waldenström A, Gennebäck N, Hellman U, et al. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells[J]. PLoS One, 2012, 7(4):e34653. |
[12] | Cosme J, Guo H, Hadipour-Lakmehsari S, et al. Hypoxia-induced changes in the fibroblast secretome, exosome, and whole-cell proteome using cultured, cardiac-derived cells isolated from neonatal mice[J]. J Proteome Res, 2017, 16(8):2836-2847. |
[13] | de Jong OG, Verhaar MC, Chen Y, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes[J]. J Extracell Vesicles, 2012, 1(1):18396. |
[14] | Matsumoto S, Sakata Y, Suna S, et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction[J]. Circ Res, 2013, 113(3):322-326. |
[15] | Luo Y, Huang L, Luo W, et al. Genomic analysis of lncRNA and mRNA profiles in circulating exosomes of patients with rheumatic heart disease[J]. Biol Open, 2019, 8(12):pii: bio045633. |
[16] | Cheow ES, Cheng WC, Lee CN, et al. Plasma-derived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for myocardial ischemic (MI) injury[J]. Mol Cell Proteomics, 2016, 15(8):2628. |
[17] | Singla DK, Johnson TA, Tavakoli Dargani Z. Exosome treatment enhances anti-inflammatory M2 macrophages and reduces inflammation-induced pyroptosis in doxorubicin-induced cardiomyopathy[J]. Cells, 2019, 8(10):E1224. |
[18] | Davidson SM, Andreadou I, Barile L, et al. Circulating blood cells and extracellular vesicles in acute cardioprotection[J]. Cardiovasc Res, 2019, 115(7):1156-1166. |
[19] | Gallet R, Dawkins J, Valle J, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction[J]. Eur Heart J, 2017, 38(3):201-211. |
[20] | Wang X, Chen Y, Zhao Z, et al. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction[J]. J Am Heart Assoc, 2018, 7(15):e008737. |
[21] | Hong K, Bjerregaard P, Gussak I, et al. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2[J]. J Cardiovasc Electrophysiol, 2005, 16(4):394-396. |
[22] | Wakili R, Voigt N, Kääb S, et al. Recent advances in the molecular pathophysiology of atrial fibrillation[J]. J Clin Invest, 2011, 121(8):2955-2968. |
[23] | Yang J, Yu X, Xue F, et al. Exosomes derived from cardiomyocytes promote cardiac fibrosis via myocyte-fibroblast cross-talk[J]. Am J Transl Res, 2018, 10(12):4350-4366. |
[24] | Garikipati VNS, Shoja-Taheri F, Davis ME, et al. Extracellular vesicles and the application of system biology and computational modeling in cardiac repair[J]. Circ Res, 2018, 123(2):188-204. |
[25] | Xu MY, Ye ZS, Song XT, et al. Differences in the cargos and functions of exosomes derived from six cardiac cell types: a systematic review[J]. Stem Cell Res Ther, 2019, 10(1):194. |
[26] | Siwaponanan P, Keawvichit R, Udompunturak S, et al. Altered profile of circulating microparticles in nonvalvular atrial fibrillation[J]. Clin Cardiol, 2019, 42(4):425-431. |
[27] | Mun D, Kim H, Kang JY, et al. Expression of miRNAs in circulating exosomes derived from patients with persistent atrial fibrillation[J]. FASEB J, 2019, 33(5):5979-5989. |
[28] | Wang S, Min J, Yu Y, et al. Differentially expressed miRNAs in circulating exosomes between atrial fibrillation and sinus rhythm[J]. J Thorac Dis, 2019, 11(10):4337. |
[29] | Liu L, Zhang H, Mao H, et al. Exosomal miR-320d derived from adipose tissue-derived MSCs inhibits apoptosis in cardiomyocytes with atrial fibrillation(AF)[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1):3976-3984. |
/
〈 |
|
〉 |