诊断学理论与实践 ›› 2020, Vol. 19 ›› Issue (02): 199-202.doi: 10.16150/j.1671-2870.2020.02.020
收稿日期:
2020-01-03
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
吴立群
E-mail:wuliqun89@hotmail.com
Received:
2020-01-03
Online:
2020-04-25
Published:
2020-04-25
中图分类号:
倪瀚文, 吴立群. 外泌体在心肌缺血及房颤诊治中的应用前景研究进展[J]. 诊断学理论与实践, 2020, 19(02): 199-202.
[1] |
Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication[J]. Curr Opin Cell Biol, 2009, 21(4): 575-581.
doi: 10.1016/j.ceb.2009.03.007 URL |
[2] |
Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway[J]. Nat Cell Biol, 2010, 12(1):19-30.
doi: 10.1038/ncb2000 pmid: 19966785 |
[3] |
Turturici G, Tinnirello R, Sconzo G, et al. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages[J]. Am J Physiol Cell Physiol, 2014, 306(7):C621-633.
doi: 10.1152/ajpcell.00228.2013 URL |
[4] | Dougherty JA, Mergaye M, Kumar N, et al. Potential role of exosomes in mending a broken heart: Nanoshuttles propelling future clinical therapeutics forward[J]. Stem Cells Int, 2017, 2017:5785436. |
[5] |
Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges[J]. Acta Pharm Sin B, 2016, 6(4):287-296.
doi: 10.1016/j.apsb.2016.02.001 URL |
[6] |
Beer L, Zimmermann M, Mitterbauer A, et al. Analysis of the secretome of apoptotic peripheral blood mononuclear cells: Impact of released proteins and exosomes for tissue regeneration[J]. Sci Rep, 2015, 5:16662.
doi: 10.1038/srep16662 URL |
[7] |
Malik ZA, Kott KS, Poe AJ, et al. Cardiac myocyte exosomes: Stability, HSP60, and proteomics[J]. Am J Physiol Heart Circ Physiol, 2013, 304(7):H954-965.
doi: 10.1152/ajpheart.00835.2012 URL |
[8] |
Yu X, Deng L, Wang D, et al. Mechanism of TNF-α autocrine effects in hypoxic cardiomyocytes: Initiated by hypoxia inducible factor 1α, presented by exosomes[J]. J Mol Cell Cardiol, 2012, 53(6):848-857.
doi: 10.1016/j.yjmcc.2012.10.002 URL |
[9] |
Yang Y, Li Y, Chen X, et al. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia[J]. J Mol Med (Berl), 2016, 94(6): 711-724.
doi: 10.1007/s00109-016-1387-2 pmid: 26857375 |
[10] |
Nie X, Fan J, Li H, et al. miR-217 promotes cardiac hypertrophy and dysfunction by targeting PTEN[J]. Mol Ther Nucleic Acids, 2018, 12:254-266.
doi: 10.1016/j.omtn.2018.05.013 URL |
[11] |
Waldenström A, Gennebäck N, Hellman U, et al. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells[J]. PLoS One, 2012, 7(4):e34653.
doi: 10.1371/journal.pone.0034653 URL |
[12] |
Cosme J, Guo H, Hadipour-Lakmehsari S, et al. Hypoxia-induced changes in the fibroblast secretome, exosome, and whole-cell proteome using cultured, cardiac-derived cells isolated from neonatal mice[J]. J Proteome Res, 2017, 16(8):2836-2847.
doi: 10.1021/acs.jproteome.7b00144 pmid: 28641008 |
[13] |
de Jong OG, Verhaar MC, Chen Y, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes[J]. J Extracell Vesicles, 2012, 1(1):18396.
doi: 10.3402/jev.v1i0.18396 URL |
[14] |
Matsumoto S, Sakata Y, Suna S, et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction[J]. Circ Res, 2013, 113(3):322-326.
doi: 10.1161/CIRCRESAHA.113.301209 pmid: 23743335 |
[15] | Luo Y, Huang L, Luo W, et al. Genomic analysis of lncRNA and mRNA profiles in circulating exosomes of patients with rheumatic heart disease[J]. Biol Open, 2019, 8(12):pii: bio045633. |
[16] |
Cheow ES, Cheng WC, Lee CN, et al. Plasma-derived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for myocardial ischemic (MI) injury[J]. Mol Cell Proteomics, 2016, 15(8):2628.
doi: 10.1074/mcp.M115.055731 URL |
[17] | Singla DK, Johnson TA, Tavakoli Dargani Z. Exosome treatment enhances anti-inflammatory M2 macrophages and reduces inflammation-induced pyroptosis in doxorubicin-induced cardiomyopathy[J]. Cells, 2019, 8(10):E1224. |
[18] |
Davidson SM, Andreadou I, Barile L, et al. Circulating blood cells and extracellular vesicles in acute cardioprotection[J]. Cardiovasc Res, 2019, 115(7):1156-1166.
doi: 10.1093/cvr/cvy314 pmid: 30590395 |
[19] | Gallet R, Dawkins J, Valle J, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction[J]. Eur Heart J, 2017, 38(3):201-211. |
[20] |
Wang X, Chen Y, Zhao Z, et al. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction[J]. J Am Heart Assoc, 2018, 7(15):e008737.
doi: 10.1161/JAHA.118.008737 URL |
[21] |
Hong K, Bjerregaard P, Gussak I, et al. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2[J]. J Cardiovasc Electrophysiol, 2005, 16(4):394-396.
doi: 10.1046/j.1540-8167.2005.40621.x URL |
[22] |
Wakili R, Voigt N, Kääb S, et al. Recent advances in the molecular pathophysiology of atrial fibrillation[J]. J Clin Invest, 2011, 121(8):2955-2968.
doi: 10.1172/JCI46315 pmid: 21804195 |
[23] |
Yang J, Yu X, Xue F, et al. Exosomes derived from cardiomyocytes promote cardiac fibrosis via myocyte-fibroblast cross-talk[J]. Am J Transl Res, 2018, 10(12):4350-4366.
pmid: 30662677 |
[24] |
Garikipati VNS, Shoja-Taheri F, Davis ME, et al. Extracellular vesicles and the application of system biology and computational modeling in cardiac repair[J]. Circ Res, 2018, 123(2):188-204.
doi: 10.1161/CIRCRESAHA.117.311215 pmid: 29976687 |
[25] |
Xu MY, Ye ZS, Song XT, et al. Differences in the cargos and functions of exosomes derived from six cardiac cell types: a systematic review[J]. Stem Cell Res Ther, 2019, 10(1):194.
doi: 10.1186/s13287-019-1297-7 URL |
[26] |
Siwaponanan P, Keawvichit R, Udompunturak S, et al. Altered profile of circulating microparticles in nonvalvular atrial fibrillation[J]. Clin Cardiol, 2019, 42(4):425-431.
doi: 10.1002/clc.23158 pmid: 30680757 |
[27] |
Mun D, Kim H, Kang JY, et al. Expression of miRNAs in circulating exosomes derived from patients with persistent atrial fibrillation[J]. FASEB J, 2019, 33(5):5979-5989.
doi: 10.1096/fj.201801758R URL |
[28] |
Wang S, Min J, Yu Y, et al. Differentially expressed miRNAs in circulating exosomes between atrial fibrillation and sinus rhythm[J]. J Thorac Dis, 2019, 11(10):4337.
doi: 10.21037/jtd.2019.09.50 URL |
[29] |
Liu L, Zhang H, Mao H, et al. Exosomal miR-320d derived from adipose tissue-derived MSCs inhibits apoptosis in cardiomyocytes with atrial fibrillation(AF)[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1):3976-3984.
doi: 10.1080/21691401.2019.1671432 URL |
[1] | 何亲羽, 王伟, 陈立芬, 张雪蕾, 董治亚. LHCGR基因突变致家族性男性性早熟2例报告及文献复习[J]. 诊断学理论与实践, 2022, 21(05): 598-605. |
[2] | 陈志敏, 何浩岚. 艾滋病合并马尔尼菲篮状菌病的诊治现状[J]. 诊断学理论与实践, 2022, 21(04): 425-430. |
[3] | 沈银忠. 《人类免疫缺陷病毒感染/艾滋病合并结核分枝杆菌感染诊治专家共识》解读[J]. 诊断学理论与实践, 2022, 21(04): 431-436. |
[4] | 施霞, 马鑫, 王珍燕, 张晖, 刘少军. 32例人类免疫缺陷病毒感染合并慢性肾病患者的临床病理特征及随访结果分析[J]. 诊断学理论与实践, 2022, 21(04): 437-443. |
[5] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[6] | 何新, 陈慧, 冯炜炜. 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022, 21(04): 541-546. |
[7] | 徐子真, 李擎天, 刘湘帆, 李莉, 李惠, 王也飞, 吴洁敏, 陈宁, 梁璆荔, 陈松立, 戴健敏, 宋珍, 丁磊. 实验诊断学在线课程的建立和实践[J]. 诊断学理论与实践, 2022, 21(04): 547-550. |
[8] | 李佳, 吕良敬. 靶向治疗时代议自身免疫病的感染挑战[J]. 诊断学理论与实践, 2022, 21(03): 299-303. |
[9] | 赵然, 詹维伟, 侯怡卿. 计算机辅助诊断系统辅助超声诊断甲状腺弥漫性病变合并结节良恶性的应用价值[J]. 诊断学理论与实践, 2022, 21(03): 390-394. |
[10] | 郭业兵, 郑金峰. 阴道壁胃肠道外间质瘤一例报道并文献复习[J]. 诊断学理论与实践, 2022, 21(03): 405-407. |
[11] | 中华医学会内分泌学分会. 新型冠状病毒肺炎疫情下骨质疏松症管理专家建议[J]. 诊断学理论与实践, 2022, 21(02): 133-135. |
[12] | 王刚, 陈生弟. 神经病学的诊断:起源、发展及挑战[J]. 诊断学理论与实践, 2022, 21(01): 1-4. |
[13] | 唐静仪, 余群, 刘军. 结合人工智能的结构影像分析对阿尔茨海默病的早期预测及精准诊断研究进展[J]. 诊断学理论与实践, 2022, 21(01): 12-17. |
[14] | 魏文石. 直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 5-7. |
[15] | 王蔚, 王小钦. 缺铁性贫血的病因诊断[J]. 诊断学理论与实践, 2021, 20(06): 529-532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||