收稿日期: 2019-10-24
网络出版日期: 2019-12-25
陈海燕, 杨小宝, 许大康 . 新生物标志物在胃肠道肿瘤中疗效预测和预后价值的研究进展[J]. 诊断学理论与实践, 2019 , 18(06) : 704 -710 . DOI: 10.16150/j.1671-2870.2019.06.020
[1] | Sanmamed MF, 陈列平. 肿瘤免疫治疗的策略转换: 从“肿瘤的免疫增强化疗法”到“肿瘤的免疫正常化疗法”[J]. 中国生物工程杂志, 2019, 39(2):26-37. |
[2] | Banna GL, Olivier T, Rundo F, et al. The Promise of digital biopsy for the prediction of tumor molecular features and clinical outcomes associated with immunotherapy[J]. Front Med, 2019, 6:172. |
[3] | 王鹏飞, 朱茜, 张丽芳, 等. CEA多表位融合蛋白在胃肠道肿瘤血清学诊断中的研究价值[J]. 医学研究杂志, 2014, 43(11):54-56. |
[4] | 潘利锋, 梁君林. 血清CEA、CA199、CA242在结直肠癌中的应用[J]. 延边医学, 2015:232-235. |
[5] | Bel Hadj Hmida Y, Tahri N, Sellami A, et al. Sensitivity, specificity and prognostic value of CEA in colorectal cancer: results of a Tunisian series and literature review[J]. Tunis Med, 2001, 79:434-440. |
[6] | 张永乐, 薛英威, 蓝秀文, 等. 肿瘤标记物CA19-9、CEA对胃癌转移和预后预测价值的分析[J]. 哈尔滨医科大学学报, 2010, 44(2):181-184,188. |
[7] | 张红霞, 张一帆, 霍美凤. 血清COLⅣ、CEA水平在结直肠癌肝转移诊断及预后判断中的价值[J]. 山东医药, 2017, 57(28):83-85. |
[8] | Liang Y, Wang W, Fang C, et al. Clinical significance and diagnostic value of serum CEA, CA19-9 and CA72-4 in patients with gastric cancer[J]. Oncotarget, 2016, 7(31):49565-49573. |
[9] | Goonetilleke KS, Siriwardena AK. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer[J]. Eur J Surg Oncol, 2007, 33(3):266-270. |
[10] | 付生弟, 谢辉. 肿瘤标志物CEA、CA19-9、CA72-4及CA242在胃癌诊断及预后判断中的应用价值[J]. 标记免疫分析与临床, 2016, 23(4):428-430,450. |
[11] | Piccart-Gebhart MJ, Marion P, Brian LJ, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer[J]. N Engl J Med, 2005, 353:1659. |
[12] | 李保奇, 岑洪, 胡晓桦. HER2过表达与胃癌预后及靶向治疗的关系[J]. 医学综述, 2010, 16(9):1321-1323. |
[13] | Cutsem Y. Kang E. Van. Efficacy results from the To GA trial: A phase Ⅲ study of trastuzumab added to standard chemotherapy (CT) in first-line human epidermal growth factor receptor 2 (HER2)-positive advanced gastric cancer (GC)[J]. Journal of Clinical Oncology, 2009, 27(18S):LBA4509. 9.[查不到 ] |
[14] | 贾长河, 谢毅, 张昊, 等. 胃癌组织中CD151、c-Met、Integrinα3表达及其与临床病理特征的关系[J]. 山东医药, 2019, 59(5): 65-67. |
[15] | Fioroni I, Dell'Aquila E, Pantano F, et al. Role of c-mese-nchymal-epithelial transition pathway in gastric cancer[J]. Expert Opin Pharmacother, 2015, 16(8):1195-1207. |
[16] | 张沛. 宫颈鳞癌中c-Met蛋白表达与细胞增殖的相关性研究[D]. 华中科技大学, 2007. |
[17] | Ma PC, Jagadeeswaran R, Jagadeesh S, et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer[J]. Cancer Res, 2005, 65(4):1479-1488. |
[18] | Xu XY, Chen P. Research progress on non-small-cell lung cancer drugs targeting Met[J]. Drugs Clin, 2016, 31(4):562-566. |
[19] | Cappuzzo F, Marchetti A, Skokan M, et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients[J]. J Clin Oncol, 2009, 27(10):1667-1674. |
[20] | 邓小英, 惠二京, 李招发. 大肠癌疗效及预后预测生物标志物的研究进展[J]. 胃肠病学和肝病学杂志, 2013, 22:393-396. |
[21] | 单宝珍. 大肠癌中EGFR、Ras蛋白表达及K-ras基因突变的研究[D]. 大连医科大学, 2009. |
[22] | Cortes-Ciriano I, Lee S, Park WY, et al. A molecular portrait of microsatellite instability across multiple cancers[J]. Nat Commun, 2017, 8:15180. |
[23] | Bonneville R, Krook MA, Kautto EA, et al. Landscape of microsatellite instability across 39 cancer types[J]. JCO Precis Oncol, 2017:2017. |
[24] | Taieb J, Shi Q, Pederson L, et al. Prognosis of microsatellite instability and/or mismatch repair deficiency stage Ⅲ colon cancer patients after disease recurrence following adjuvant treatment: results of an ACCENT pooled analysis of seven studies[J]. Ann Oncol, 2019, 30(9):1466-1471. |
[25] | 王怡, 孙孟红, 施达仁. 错配修复基因功能缺陷与相关肿瘤发生[J]. 临床与实验病理学杂志, 2003, 19:547-550. |
[26] | Corso G, Pedrazzani C, Marrelli D. Correlation of microsatellite instability at multiple loci with long-term survival in advanced gastric carcinoma[J]. Arch Surg, 2009, 144(8):722-727. |
[27] | 朱涤潮, 张涛, 张明辉, 等. MMR/MSI在结直肠癌抗PD-1/PD-L1免疫检查点治疗中的作用[J]. 肿瘤学杂志, 2017, 23(10): 904-909. |
[28] | Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens[J]. Nature, 2014, 515(7528):577-581. |
[29] | 郑璐瑶, 王薇, 苏乌云. 免疫靶点抑制剂在晚期非小细胞肺癌治疗中的应用研究进展[J]. 山东医药, 2018, 58(31):93-95. |
[30] | Yarchoan M, Albacker LA, Hopkins AC, et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers[J]. JCI Insight, 2019, 4(6)pii: 126908. |
[31] | 郭雅静. PD-L1、PD-1表达与肺癌生物学特征关系的研究[D]. 河北医科大学, 2018. |
[32] | Weber J, Mandala M, Del Vecchio M, et al. Adjuvant nivolumab versus ipilimumab in resected stage Ⅲ or Ⅳ melanoma[J]. N Engl J Med, 2017, 377(19):1824-1835. |
[33] | Brahmer JR, Drake CG, Wollner I, et al. Phase Ⅰ study of single-agent anti-programmed death-1 (MDX-1106) in re-fractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates[J]. J Clin Oncol, 2010, 28(19):3167-3175. |
[34] | Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26):2443-2454. |
[35] | Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma[J]. N Engl J Med, 2010, 363(8):711-723. |
[36] | Callahan MK, Postow MA, Wolchok JD. Targeting T Cell Co-receptors for Cancer Therapy[J]. Immunity, 2016, 44(5):1069-1078. |
[37] | Postow MA. Managing immune checkpoint-blocking an-tibody side effects[J]. Am Soc Clin Oncol Educ Book, 2015, 35:76-83. |
[38] | Weber JS, Yang JC, Atkins MB, et al. Toxicities of Immunotherapy for the Practitioner[J]. J Clin Oncol, 2015, 33(18):2092-2099. |
[39] | Naidoo J, Page DB, Li BT, et al. Toxicities of the Anti-PD-1 and Anti-PD-L1 Immune Checkpoint Antibodies[J]. Ann Oncol, 2016, 27(7):1362. |
[40] | Champiat S, Lambotte O, Barreau E, et al. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper[J]. Ann Oncol, 2016, 27(4):559-574. |
[41] | Garber K. Pursuit of tumor-infiltrating lymphocyte immunotherapy speeds up[J]. Nat Biotechnol, 2019, 37(9):969-971. |
[42] | Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy[J]. Clin Cancer Res, 2011, 17(13):4550-4557. |
[43] | Besser MJ, Shapira-Frommer R, Itzhaki O, et al. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies[J]. Clin Cancer Res, 2013, 19(17):4792-4800. |
[44] | Radvanyi LG, Bernatchez C, Zhang M, et al. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients[J]. Clin Cancer Res, 2012, 18(24): 6758-6770. |
[45] | Pilon-Thomas S, Kuhn L, Ellwanger S, et al. Efficacy of adoptive cell transfer of tumor-infiltrating lymphocytes after lymphopenia induction for metastatic melanoma[J]. J Immunother, 2012, 35(8):615-620. |
[46] | Tran E, Turcotte S, Gros A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer[J]. Science, 2014, 344(6184):641-645. |
[47] | Stevanović S, Draper LM, Langhan MM, et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells[J]. J Clin Oncol, 2015, 33(14):1543-1550. |
[48] | 肖长春. 大肠癌肝转移预后与肿瘤浸润淋巴细胞CD3+、CD8+表达的关系[D]. 复旦大学, 2009. |
[49] | 卢慧敏, 王琰, 陈陆俊, 等. CD103+CD8+T细胞在结直肠癌组织中的浸润分布及其临床意义[J]. 中国肿瘤生物治疗杂志, 2019, 26(1):50-57. |
[50] | 朱玲燕, 周嘉, 刘彦章,等. 自然杀伤细胞在原发性肝细胞肝癌中的浸润及其与预后的关系[J]. 癌症, 2009, 28(11):1198-1202. |
[51] | 张燕, 郭爱萍, 张晓君, 等. 三阴性乳腺癌组织PD-L1和HIF-1α表达临床意义[J]. 中华肿瘤防治杂志, 2018, 25(18):39-43. |
[52] | Ott PA, Bang YJ, Piha-Paul SA, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028[J]. J Clin Oncol, 2019, 37(4):318-327. |
[53] | 叶妮, 陈卫昌. 免疫抑制性细胞Treg和MDSCs与胃癌临床病理特征关系的研究[J]. 胃肠病学, 2015, 20(4):210-213. |
[54] | Page EC, Bancroft EK, Brook MN, et al. Interim results from the IMPACT study: evidence for prostate-specific antigen screening in BRCA2 mutation carriers[J]. Eur Urol, 2019, 76(6):831-842. |
[55] | 罗漫君, 彭昆伟, 尤长宣. 肿瘤突变负荷在免疫检查点抑制剂中的疗效预测作用及临床应用进展[J]. 肿瘤, 2018, 38(11):1077-1081. |
[56] | Wang F, Wei XL, Wang FH, et al. Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ⅰb/Ⅱ clinical trial NCT02915432[J]. Ann Oncol, 2019, 30(9):1479-1486. |
[57] | Huang AC, Postow MA, Orlowski RJ, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response[J]. Nature, 2017, 545(7652):60-65. |
[58] | Wang F, Wei XL, Wang FH, et al. Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ⅰb/Ⅱ clinical trial NCT02915432[J]. Ann Oncol, 2019, 30(9):1479-1486. |
[59] | 杨萌. 恶性肿瘤的循环突变图谱特征研究[D]. 天津医科大学, 2018. |
[60] | Creemers A, Krausz S, Strijker M, et al. Clinical value of ctDNA in upper-GI cancers: A systematic review and meta-analysis[J]. Biochim Biophys Acta Rev Cancer, 2017, 1868(2):394-403. |
[61] | 周娜. 非小细胞肺癌患者血液循环DNA含量及完整性的研究[D]. 济南大学, 2016. |
[62] | 张音洁, 王晰程. 循环肿瘤DNA在消化系统肿瘤中的临床应用[J]. 癌症进展, 2019, 17(2):131-136. |
[63] | Ueda M, Iguchi T, Masuda T, et al. Somatic mutations in plasma cell-free DNA are diagnostic markers for esophageal squamous cell carcinoma recurrence[J]. Oncotarget, 2014, 7(38):62280-62291. |
[64] | Lecomte T, Berger A, Zinzindohoué F, et al. Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis[J]. Int J Cancer, 2002, 100(5):542-548. |
[65] | Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30:255-289. |
[66] | Bobrie A, Colombo M, Raposo G, et al. Exosome secretion: molecular mechanisms and roles in immune responses[J]. Traffic, 2011, 12(12):1659-1668. |
[67] | Del Boccio P, Raimondo F, Pieragostino D, et al. A hyphenated microLC-Q-TOF-MS platform for exosomal lipidomics investigations: application to RCC urinary exosomes[J]. Electrophoresis, 2012, 33(4):689-696. |
[68] | Zhang H, Deng T, Liu R, et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis[J]. Nat Commun, 2017, 8:15016. |
/
〈 |
|
〉 |