综述

影像组学及影像基因组学在肺癌诊疗中的应用进展

展开
  • a.上海交通大学医学院附属瑞金医院,住院医师规范化培训全科基地,上海 200025
    b.上海交通大学医学院附属瑞金医院,老年病科,上海 200025
    c.上海交通大学医学院附属瑞金医院,呼吸与危重症学科,上海 200025

收稿日期: 2019-05-23

  网络出版日期: 2019-12-25

基金资助

重要薄弱学科建设基金(2015ZB0503);上海市卫计委科研基金(201840083);上海市高校教师产学研计划(RC20190079)

本文引用格式

王晓妍, 潘丽娜, 高蓓莉, 徐志红, 胡家安 . 影像组学及影像基因组学在肺癌诊疗中的应用进展[J]. 诊断学理论与实践, 2019 , 18(06) : 711 -714 . DOI: 10.16150/j.1671-2870.2019.06.021

参考文献

[1] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2):87-108.
[2] Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries[J]. Lancet Glob Health, 2018, 6(5):e555-e567.
[3] Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9): 1234-1248.
[4] Mazurowski MA. Radiogenomics: what it is and why it is important[J]. J Am Coll Radiol, 2015, 12(8): 862-866.
[5] Avanzo M, Stancanello J, El Naqa I. Beyond imaging: The promise of radiomics[J]. Phys Med, 2017, 38:122-139.
[6] Velazquez ER, Parmar C, Jermoumi M, et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer[J]. Sci Rep, 2013, 3:3529.
[7] Kamiya A, Murayama S, Kamiya H, et al. Kurtosis and skewness assessments of solid lung nodule density histograms: differentiating malignant from benign nodules on CT[J]. Jpn J Radiol, 2014, 32(1):14-21.
[8] Choi W, Oh JH, Riyahi S, et al. Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer[J]. Med Phys, 2018, 45(4):1537-1549.
[9] Balagurunathan Y, Schabath MB, Wang H, et al. Quantitative imaging features improve discrimination of malignancy in pulmonary nodules[J]. Sci Rep, 2019, 9(1):8528.
[10] Zhu X, Dong D, Chen Z, et al. Radiomic signature as a diag-nostic factor for histologic subtype classification of non-small cell lung cancer[J]. Eur Radiol, 2018, 28(7):2772-2778.
[11] Bera K, Velcheti V, Madabhushi A. Novel quantitative imaging for predicting response to therapy: Techniques and clinical applications[J]. Am Soc Clin Oncol Educ Book, 2018, 38:1008-1018.
[12] Gevaert O, Echegaray S, Khuong A, et al. Predictive radiogenomics modeling of EGFR mutation status in lung cancer[J]. Sci Rep, 2017, 7:41674.
[13] Cheng Z, Shan F, Yang Y, et al. CT characteristics of non-small cell lung cancer with epidermal growth factor receptor mutation: a systematic review and meta-analysis[J] .BMC Med Imaging, 2017, 17(1):5.
[14] Sacconi B, Anzidei M, Leonardi A, et al. Analysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma: a correlation with EGFR mutations and survival rates[J]. Clin Radiol, 2017, 72(6):443-450.
[15] Zhao J, Dinkel J, Warth A,et al. CT characteristics in pulmonary adenocarcinoma with epidermal growth factor receptor mutation[J]. PLoS One, 2017, 12(9):e0182741.
[16] Shi Z, Zheng X, Shi R, et al. Radiological and clinical features associated with epidermal growth factor receptor mutation status of exon 19 and 21 in lung adenocarcinoma[J]. Sci Rep, 2017, 7(1):364.
[17] Rizzo S, Petrella F, Buscarino V, et al. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer[J]. Eur Radiol, 2016, 26(1): 32-42.
[18] Wang H, Schabath MB, Liu Y, et al. Association between computed tomographic features and kirsten rat sarcoma viral oncogene mutations in patients with stage Ⅰlung adenocarcinoma and their prognostic value[J]. Clin Lung Cancer, 2016, 17(4):271-278.
[19] Rios Velazquez E, Parmar C, Liu Y, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer[J]. Cancer Res, 2017, 77(14):3922-3930.
[20] Yoon HJ, Sohn I, Cho JH, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach[J]. Medicine (Baltimore), 2015, 94(41):e1753.
[21] Plodkowski AJ, Drilon A, Halpenny DF, et al. From genotype to phenotype: Are there imaging characteristics associated with lung adenocarcinomas harboring RET and ROS1 rearrangements?[J]. Lung Cancer, 2015, 90(2):321-325.
[22] Aerts HJ, Grossmann P, Tan Y, et al. Defining a radiomic response phenotype: A pilot study using targeted therapy in NSCLC[J]. Sci Rep, 2016, 6:33860.
[23] Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5:4006.
[24] Yamamoto S, Korn RL, Oklu R, et al. ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization[J]. Radiology, 2014, 272(2):568-576.
[25] Lee Y, Lee HJ, Kim YT, et al. Imaging characteristics of stage Ⅰ non-small cell lung cancer on CT and FDG-PET: relationship with epidermal growth factor receptor protein expression status and survival[J]. Korean J Radiol, 2013, 14(2):375-383.
[26] Mattonen SA, Palma DA, Johnson C, et al. Detection of local gancer recurrence after stereotactic ablative radiation therapy for lung cancer: Physician performance versus radiomic assessment[J]. Int J Radiat Oncol Biol Phys, 2016, 94(5):1121-1128.
[27] Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma[J] .Radiother Oncol, 2015, 114(3):345-350.
[28] Starkov P, Aguilera TA, Golden DI, et al. The use of texture-based radiomics CT analysis to predict outcomes in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy[J]. Br J Radiol, 2019, 92(1094): 20180228.
[29] Chaddad A, Desrosiers C, Toews M, et al. Predicting survival time of lung cancer patients using radiomic analysis[J]. Oncotarget, 2017, 8(61):104393-104407.
文章导航

/