诊断学理论与实践 ›› 2019, Vol. 18 ›› Issue (06): 711-714.doi: 10.16150/j.1671-2870.2019.06.021
王晓妍a, 潘丽娜b, 高蓓莉c, 徐志红b,#(), 胡家安b,#()
收稿日期:
2019-05-23
出版日期:
2019-12-25
发布日期:
2019-12-25
通讯作者:
徐志红,胡家安
E-mail:zhihxu@163.com;jahu_rj@aliyun.com
基金资助:
Received:
2019-05-23
Online:
2019-12-25
Published:
2019-12-25
中图分类号:
王晓妍, 潘丽娜, 高蓓莉, 徐志红, 胡家安. 影像组学及影像基因组学在肺癌诊疗中的应用进展[J]. 诊断学理论与实践, 2019, 18(06): 711-714.
[1] |
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2):87-108.
doi: 10.3322/caac.21262 URL |
[2] | Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries[J]. Lancet Glob Health, 2018, 6(5):e555-e567. |
[3] |
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9): 1234-1248.
doi: 10.1016/j.mri.2012.06.010 URL |
[4] |
Mazurowski MA. Radiogenomics: what it is and why it is important[J]. J Am Coll Radiol, 2015, 12(8): 862-866.
doi: 10.1016/j.jacr.2015.04.019 pmid: 26250979 |
[5] |
Avanzo M, Stancanello J, El Naqa I. Beyond imaging: The promise of radiomics[J]. Phys Med, 2017, 38:122-139.
doi: 10.1016/j.ejmp.2017.05.071 URL |
[6] |
Velazquez ER, Parmar C, Jermoumi M, et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer[J]. Sci Rep, 2013, 3:3529.
doi: 10.1038/srep03529 pmid: 24346241 |
[7] |
Kamiya A, Murayama S, Kamiya H, et al. Kurtosis and skewness assessments of solid lung nodule density histograms: differentiating malignant from benign nodules on CT[J]. Jpn J Radiol, 2014, 32(1):14-21.
doi: 10.1007/s11604-013-0264-y pmid: 24248771 |
[8] |
Choi W, Oh JH, Riyahi S, et al. Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer[J]. Med Phys, 2018, 45(4):1537-1549.
doi: 10.1002/mp.12820 URL |
[9] |
Balagurunathan Y, Schabath MB, Wang H, et al. Quantitative imaging features improve discrimination of malignancy in pulmonary nodules[J]. Sci Rep, 2019, 9(1):8528.
doi: 10.1038/s41598-019-44562-z pmid: 31189944 |
[10] |
Zhu X, Dong D, Chen Z, et al. Radiomic signature as a diag-nostic factor for histologic subtype classification of non-small cell lung cancer[J]. Eur Radiol, 2018, 28(7):2772-2778.
doi: 10.1007/s00330-017-5221-1 URL |
[11] | Bera K, Velcheti V, Madabhushi A. Novel quantitative imaging for predicting response to therapy: Techniques and clinical applications[J]. Am Soc Clin Oncol Educ Book, 2018, 38:1008-1018. |
[12] |
Gevaert O, Echegaray S, Khuong A, et al. Predictive radiogenomics modeling of EGFR mutation status in lung cancer[J]. Sci Rep, 2017, 7:41674.
doi: 10.1038/srep41674 URL |
[13] |
Cheng Z, Shan F, Yang Y, et al. CT characteristics of non-small cell lung cancer with epidermal growth factor receptor mutation: a systematic review and meta-analysis[J] .BMC Med Imaging, 2017, 17(1):5.
doi: 10.1186/s12880-016-0175-3 URL |
[14] |
Sacconi B, Anzidei M, Leonardi A, et al. Analysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma: a correlation with EGFR mutations and survival rates[J]. Clin Radiol, 2017, 72(6):443-450.
doi: S0009-9260(17)30043-0 pmid: 28258739 |
[15] |
Zhao J, Dinkel J, Warth A,et al. CT characteristics in pulmonary adenocarcinoma with epidermal growth factor receptor mutation[J]. PLoS One, 2017, 12(9):e0182741.
doi: 10.1371/journal.pone.0182741 URL |
[16] |
Shi Z, Zheng X, Shi R, et al. Radiological and clinical features associated with epidermal growth factor receptor mutation status of exon 19 and 21 in lung adenocarcinoma[J]. Sci Rep, 2017, 7(1):364.
doi: 10.1038/s41598-017-00511-2 URL |
[17] |
Rizzo S, Petrella F, Buscarino V, et al. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer[J]. Eur Radiol, 2016, 26(1): 32-42.
doi: 10.1007/s00330-015-3814-0 URL |
[18] |
Wang H, Schabath MB, Liu Y, et al. Association between computed tomographic features and kirsten rat sarcoma viral oncogene mutations in patients with stage Ⅰlung adenocarcinoma and their prognostic value[J]. Clin Lung Cancer, 2016, 17(4):271-278.
doi: 10.1016/j.cllc.2015.11.002 pmid: 26712103 |
[19] |
Rios Velazquez E, Parmar C, Liu Y, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer[J]. Cancer Res, 2017, 77(14):3922-3930.
doi: 10.1158/0008-5472.CAN-17-0122 pmid: 28566328 |
[20] | Yoon HJ, Sohn I, Cho JH, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach[J]. Medicine (Baltimore), 2015, 94(41):e1753. |
[21] |
Plodkowski AJ, Drilon A, Halpenny DF, et al. From genotype to phenotype: Are there imaging characteristics associated with lung adenocarcinomas harboring RET and ROS1 rearrangements?[J]. Lung Cancer, 2015, 90(2):321-325.
doi: 10.1016/j.lungcan.2015.09.018 pmid: 26424208 |
[22] |
Aerts HJ, Grossmann P, Tan Y, et al. Defining a radiomic response phenotype: A pilot study using targeted therapy in NSCLC[J]. Sci Rep, 2016, 6:33860.
doi: 10.1038/srep33860 pmid: 27645803 |
[23] |
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5:4006.
doi: 10.1038/ncomms5006 pmid: 24892406 |
[24] |
Yamamoto S, Korn RL, Oklu R, et al. ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization[J]. Radiology, 2014, 272(2):568-576.
doi: 10.1148/radiol.14140789 pmid: 24885982 |
[25] |
Lee Y, Lee HJ, Kim YT, et al. Imaging characteristics of stage Ⅰ non-small cell lung cancer on CT and FDG-PET: relationship with epidermal growth factor receptor protein expression status and survival[J]. Korean J Radiol, 2013, 14(2):375-383.
doi: 10.3348/kjr.2013.14.2.375 URL |
[26] |
Mattonen SA, Palma DA, Johnson C, et al. Detection of local gancer recurrence after stereotactic ablative radiation therapy for lung cancer: Physician performance versus radiomic assessment[J]. Int J Radiat Oncol Biol Phys, 2016, 94(5):1121-1128.
doi: 10.1016/j.ijrobp.2015.12.369 URL |
[27] |
Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma[J] .Radiother Oncol, 2015, 114(3):345-350.
doi: 10.1016/j.radonc.2015.02.015 pmid: 25746350 |
[28] | Starkov P, Aguilera TA, Golden DI, et al. The use of texture-based radiomics CT analysis to predict outcomes in early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy[J]. Br J Radiol, 2019, 92(1094): 20180228. |
[29] |
Chaddad A, Desrosiers C, Toews M, et al. Predicting survival time of lung cancer patients using radiomic analysis[J]. Oncotarget, 2017, 8(61):104393-104407.
doi: 10.18632/oncotarget.22251 URL |
[1] | 孙艳艳, 兰信堂. 肺癌颅脑转移患者接受放射治疗后前庭功能受损1例[J]. 诊断学理论与实践, 2022, 21(05): 632-634. |
[2] | 杜燕然, 焦景, 任芸芸, 周建桥. 超声影像组学技术在评估胎肺成熟度中的应用[J]. 诊断学理论与实践, 2022, 21(03): 326-330. |
[3] | 吴歆, 耿旭强, 徐沪济. 多基因风险评分在复杂性状疾病中的应用进展[J]. 诊断学理论与实践, 2020, 19(05): 540-543. |
[4] | 杜海磊, 陈聆, 罗方秀, 李勇, 程齐俭, 朱良纲, 杭钧彪. Beclin-1和Bcl-2表达与非小细胞肺癌患者病理特征及预后间关系的研究[J]. 诊断学理论与实践, 2020, 19(03): 258-263. |
[5] | 刘海霞, 瞿介明. 肺部微生态及其与肺癌关系的研究进展[J]. 诊断学理论与实践, 2019, 18(05): 496-502. |
[6] | 王晓斐, 高蓓莉. 肺癌免疫治疗标志物研究进展认识[J]. 诊断学理论与实践, 2018, 17(05): 494-498. |
[7] | 张国桢, 蔡庆, 张伟强. 早期微小肺腺癌CT影像与病理的相关性[J]. 诊断学理论与实践, 2018, 17(05): 490-493. |
[8] | 张新, 张新宇. 支气管冲洗液基因检测在肺癌诊治中的价值[J]. 诊断学理论与实践, 2018, 17(05): 508-511. |
[9] | 韩宝惠, 沈胤晨. 我国肺癌筛查现状与展望[J]. 诊断学理论与实践, 2018, 17(05): 487-489. |
[10] | 顾圣佳, 曹琪琪, 严福华, 杨文洁. 双能CT在非小细胞肺癌非手术治疗疗效评估中的应用价值[J]. 诊断学理论与实践, 2018, 17(05): 526-532. |
[11] | 马韵芳, 潘丽娜, 张培培, 何清, 徐志红, 胡家安. 人类表皮生长因子受体2基因扩增的非小细胞肺癌一例报告[J]. 诊断学理论与实践, 2018, 17(04): 462-465. |
[12] | 杨文洁, 严福华. 2015版《低剂量螺旋CT肺癌筛查专家共识》和《肺亚实性结节影像处理专家共识》解读[J]. 诊断学理论与实践, 2017, 16(01): 32-37. |
[13] | 宗晓福, 仇玉平, 张文娟, 俞同福,. 肺黏液性腺癌的临床及CT表现和病理特点[J]. 诊断学理论与实践, 2015, 14(04): 353-356. |
[14] | 应建明, 邱田,. 肺癌表皮生长因子基因突变和间变性淋巴瘤激酶融合基因的规范化检测[J]. 诊断学理论与实践, 2013, 12(06): 591-595. |
[15] | 王海燕, 王建东, 石群立,. 非小细胞肺癌靶向治疗的相关分子检测[J]. 诊断学理论与实践, 2013, 12(06): 596-599. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||