国内外学术动态

肿瘤免疫治疗策略的转变及相关标志物研究现状

展开
  • 1.上海交通大学医学院附属第九人民医院检验科,上海 200011
    2.上海交通大学医学院检验系,上海 200025

收稿日期: 2019-05-10

  网络出版日期: 2019-08-25

本文引用格式

罗清琼, 陈福祥 . 肿瘤免疫治疗策略的转变及相关标志物研究现状[J]. 诊断学理论与实践, 2019 , 18(04) : 387 -393 . DOI: 10.16150/j.1671-2870.2019.04.003

参考文献

[1] Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy[J]. Clin Cancer Res, 2015, 21(4):687-692.
[2] Allard B, Aspeslagh S, Garaud S, et al. Immuno-oncology-101: overview of major concepts and translational perspectives[J]. Semin Cancer Biol, 2018, 52(Pt 2):1-11.
[3] Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point[J]. Nature, 2017, 541(7637):321-330.
[4] Sambi M, Bagheri L, Szewczuk MR. Current Challenges in Cancer Immunotherapy: Multimodal Approaches to Improve Efficacy and Patient Response Rates[J]. J Oncol, 2019, 2019:4508794.
[5] Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382):1350-1355.
[6] Coley WB . II. Contribution to the Knowledge of Sarcoma[J]. Ann Surg, 1891, 14(3):199-220.
[7] Sanmamed MF, Chen L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization[J]. Cell, 2018 Oct 4, 175(2):313-326.
[8] Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle[J]. Immunity, 2013, 39(1):1-10.
[9] Medon M, Vidacs E, Vervoort SJ, et al. HDAC Inhibitor Panobinostat Engages Host Innate Immune Defenses to Promote the Tumoricidal Effects of Trastuzumab in HER2+ Tumors[J]. Cancer Res, 2017, 77(10):2594-2606.
[10] Chen R, Hou J, Newman E, et al. CD30 Downregulation, MMAE Resistance, and MDR1 Upregulation Are All Associated with Resistance to Brentuximab Vedotin[J]. Mol Cancer Ther, 2015, 14(6):1376-1384.
[11] Shindo Y, Hazama S, Maeda Y, et al. Adoptive immunotherapy with MUC1-mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer[J]. J Transl Med, 2014, 12:175.
[12] Mittica G, Capellero S, Genta S, et al. Adoptive immunotherapy against ovarian cancer[J]. J Ovarian Res, 2016, 9(1):30.
[13] Gao X, Mi Y, Guo N, et al. Cytokine-Induced Killer Cells As Pharmacological Tools for Cancer Immunotherapy[J]. Front Immunol, 2017, 8:774.
[14] Patel S, Burga RA, Powell AB, et al. Beyond CAR T Cells: Other Cell-Based Immunotherapeutic Strategies Against Cancer[J]. Front Oncol, 2019, 9:196.
[15] Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering[J]. Nature, 2017, 545(7655):423-431.
[16] Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer[J]. N Engl J Med, 2010, 363(5):411-422.
[17] Klener P Jr, Otáhal P, Lateckova L, et al. Immunotherapy Approaches in Cancer Treatment[J]. Curr Pharm Biotechnol, 2015, 16(9):771-781.
[18] Melero I, Gaudernack G, Gerritsen W, et al. Therapeutic vaccines for cancer: an overview of clinical trials[J]. Nat Rev Clin Oncol, 2014, 11(9):509-524.
[19] Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizu-mab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial[J]. Lancet, 2016, 387(10030):1837-1846.
[20] Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolu-mab for Recurrent Squamous-Cell Carcinoma of the Head and Neck[J]. N Engl J Med, 2016, 375(19):1856-1867.
[21] Wolchok JD, Weber JS, Maio M, et al. Four-year survival rates for patients with metastatic melanoma who received ipilimumab in phase II clinical trials[J]. Ann Oncol, 2013, 24(8):2174-2180.
[22] Chiarion-Sileni V, Pigozzo J, Ascierto PA, et al. Ipilimumab retreatment in patients with pretreated advanced melanoma: the expanded access programme in Italy[J]. Br J Cancer, 2014, 110(7):1721-1726.
[23] Calabrò L, Morra A, Fonsatti E, et al. Efficacy and safety of an intensified schedule of tremelimumab for chemotherapy-resistant malignant mesothelioma: an open-label, single-arm, phase 2 study[J]. Lancet Respir Med, 2015, 3(4):301-309.
[24] Duffy AG, Ulahannan SV, Makorova-Rusher O, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma[J]. J Hepatol, 2017, 66(3):545-551.
[25] Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Ove-rall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma[J]. N Engl J Med, 2017, 377(14):1345-1356.
[26] Tawbi HA, Forsyth PA, Algazi A, et al. Combined Nivolumab and Ipilimumab in Melanoma Metastatic to the Brain[J]. N Engl J Med, 2018, 379(8):722-730.
[27] He Y, Cao J, Zhao C, et al. TIM-3, a promising target for cancer immunotherapy[J]. Onco Targets Ther, 2018, 11:7005-7009.
[28] Long L, Zhang X, Chen F, et al. The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy[J]. Genes Cancer, 2018, 9(5-6):176-189.
[29] Wang J, Sun J, Liu LN, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy[J]. Nat Med, 2019, 25(4):656-666.
[30] Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26):2443-2454.
[31] Lupo A, Alifano M, Wislez M, et al. Biomarkers predictive of PD1/PD-L1 immunotherapy in non-small cell lung cancer[J]. Rev Pneumol Clin, 2018, 74(5):339-350.
[32] Chae YK, Pan A, Davis AA, et al. Biomarkers for PD-1/PD-L1 Blockade Therapy in Non-Small-cell Lung Cancer: Is PD-L1 Expression a Good Marker for Patient Selection?[J]. Clin Lung Cancer, 2016, 17(5):350-361.
[33] Antonia SJ, López-Martin JA, Bendell J, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial[J]. Lancet Oncol, 2016, 17(7):883-895.
[34] Kluger HM, Zito CR, Turcu G, et al. PD-L1 Studies Across Tumor Types, Its Differential Expression and Predictive Value in Patients Treated with Immune Checkpoint Inhibitors[J]. Clin Cancer Res, 2017, 23(15):4270-4279.
[35] Doroshow DB, Sanmamed MF, Hastings K, et al. Immunotherapy in Non-Small Cell Lung Cancer: Facts and Hopes[J]. Clin Cancer Res, 2019, 25(15):4592-4602.
[36] Stovgaard ES, Dyhl-Polk A, Roslind A, et al. PD-L1 expression in breast cancer: expression in subtypes and prognostic significance: a systematic review[J]. Breast Cancer Res Treat, 2019, 174(3):571-584.
[37] Berland L, Heeke S, Humbert O, et al. Current views on tumor mutational burden in patients with non-small cell lung cancer treated by immune checkpoint inhibitors[J]. J Thorac Dis, 2019, 11(Suppl 1):S71-S80.
[38] Wang RF, Wang HY. Immune targets and neoantigens for cancer immunotherapy and precision medicine[J]. Cell Res, 2017, 27(1):11-37.
[39] Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230):124-128.
[40] Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial[J]. Lancet, 2016, 387(10031):1909-1920.
[41] Mandal R, Chan TA. Personalized Oncology Meets Immunology: The Path toward Precision Immunotherapy[J]. Cancer Discov, 2016, 6(7):703-713.
[42] Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349):409-413.
[43] Colle R, Cohen R, Cochereau D, et al. Immunotherapy and patients treated for cancer with microsatellite instability[J]. Bull Cancer, 2017, 104(1):42-51.
[44] Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blocka-de induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528):568-571.
[45] Daud AI, Loo K, Pauli ML, et al. Tumor immune profi-ling predicts response to anti-PD-1 therapy in human melanoma[J]. J Clin Invest, 2016, 126(9):3447-3452.
[46] Krieg C, Nowicka M, Guglietta S, et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy[J]. Nat Med, 2018, 24(2):144-153.
[47] Capone M, Giannarelli D, Mallardo D, et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab[J]. J Immunother Cancer, 2018, 6(1):74.
[48] Das R, Bar N, Ferreira M, et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade[J]. J Clin Invest, 2018, 128(2):715-720.
[49] Lim SY, Lee JH, Gide TN, et al. Circulating Cytokines Predict Immune-Related Toxicity in Melanoma Patients Receiving Anti-PD-1-Based Immunotherapy[J]. Clin Cancer Res, 2019, 25(5):1557-1563.
[50] Felix J, Cassinat B, Porcher R, et al. Relevance of serum biomarkers associated with melanoma during follow-up of anti-CTLA-4 immunotherapy[J]. Int Immunopharmacol, 2016, 40:466-473.
[51] Nagato T, Ohkuri T, Ohara K, et al. Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy[J]. Cancer Immunol Immunother, 2017, 66(7):877-890.
[52] Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J]. Nature, 2018, 560(7718):382-386.
[53] Li L, Zhang J, Jiang X, et al. Promising clinical application of ctDNA in evaluating immunotherapy efficacy[J]. Am J Cancer Res, 2018, 8(10):1947-1956.
[54] Goldberg SB, Narayan A, Kole AJ, et al. Early Assessment of Lung Cancer Immunotherapy Response via Circulating Tumor DNA[J]. Clin Cancer Res, 2018, 24(8):1872-1880.
[55] Boeri M, Milione M, Proto C, et al. Circulating miRNAs and PD-L1 Tumor Expression Are Associated with Survival in Advanced NSCLC Patients Treated with Immunotherapy: a Prospective Study[J]. Clin Cancer Res, 2019, 25(7):2166-2173.
[56] Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371):97-103.
文章导航

/