罗清琼, 陈福祥 . 肿瘤免疫治疗策略的转变及相关标志物研究现状[J]. 诊断学理论与实践, 2019 , 18(04) : 387 -393 . DOI: 10.16150/j.1671-2870.2019.04.003
[1] | Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy[J]. Clin Cancer Res, 2015, 21(4):687-692. |
[2] | Allard B, Aspeslagh S, Garaud S, et al. Immuno-oncology-101: overview of major concepts and translational perspectives[J]. Semin Cancer Biol, 2018, 52(Pt 2):1-11. |
[3] | Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point[J]. Nature, 2017, 541(7637):321-330. |
[4] | Sambi M, Bagheri L, Szewczuk MR. Current Challenges in Cancer Immunotherapy: Multimodal Approaches to Improve Efficacy and Patient Response Rates[J]. J Oncol, 2019, 2019:4508794. |
[5] | Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382):1350-1355. |
[6] | Coley WB . II. Contribution to the Knowledge of Sarcoma[J]. Ann Surg, 1891, 14(3):199-220. |
[7] | Sanmamed MF, Chen L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization[J]. Cell, 2018 Oct 4, 175(2):313-326. |
[8] | Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle[J]. Immunity, 2013, 39(1):1-10. |
[9] | Medon M, Vidacs E, Vervoort SJ, et al. HDAC Inhibitor Panobinostat Engages Host Innate Immune Defenses to Promote the Tumoricidal Effects of Trastuzumab in HER2+ Tumors[J]. Cancer Res, 2017, 77(10):2594-2606. |
[10] | Chen R, Hou J, Newman E, et al. CD30 Downregulation, MMAE Resistance, and MDR1 Upregulation Are All Associated with Resistance to Brentuximab Vedotin[J]. Mol Cancer Ther, 2015, 14(6):1376-1384. |
[11] | Shindo Y, Hazama S, Maeda Y, et al. Adoptive immunotherapy with MUC1-mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer[J]. J Transl Med, 2014, 12:175. |
[12] | Mittica G, Capellero S, Genta S, et al. Adoptive immunotherapy against ovarian cancer[J]. J Ovarian Res, 2016, 9(1):30. |
[13] | Gao X, Mi Y, Guo N, et al. Cytokine-Induced Killer Cells As Pharmacological Tools for Cancer Immunotherapy[J]. Front Immunol, 2017, 8:774. |
[14] | Patel S, Burga RA, Powell AB, et al. Beyond CAR T Cells: Other Cell-Based Immunotherapeutic Strategies Against Cancer[J]. Front Oncol, 2019, 9:196. |
[15] | Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering[J]. Nature, 2017, 545(7655):423-431. |
[16] | Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer[J]. N Engl J Med, 2010, 363(5):411-422. |
[17] | Klener P Jr, Otáhal P, Lateckova L, et al. Immunotherapy Approaches in Cancer Treatment[J]. Curr Pharm Biotechnol, 2015, 16(9):771-781. |
[18] | Melero I, Gaudernack G, Gerritsen W, et al. Therapeutic vaccines for cancer: an overview of clinical trials[J]. Nat Rev Clin Oncol, 2014, 11(9):509-524. |
[19] | Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizu-mab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial[J]. Lancet, 2016, 387(10030):1837-1846. |
[20] | Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolu-mab for Recurrent Squamous-Cell Carcinoma of the Head and Neck[J]. N Engl J Med, 2016, 375(19):1856-1867. |
[21] | Wolchok JD, Weber JS, Maio M, et al. Four-year survival rates for patients with metastatic melanoma who received ipilimumab in phase II clinical trials[J]. Ann Oncol, 2013, 24(8):2174-2180. |
[22] | Chiarion-Sileni V, Pigozzo J, Ascierto PA, et al. Ipilimumab retreatment in patients with pretreated advanced melanoma: the expanded access programme in Italy[J]. Br J Cancer, 2014, 110(7):1721-1726. |
[23] | Calabrò L, Morra A, Fonsatti E, et al. Efficacy and safety of an intensified schedule of tremelimumab for chemotherapy-resistant malignant mesothelioma: an open-label, single-arm, phase 2 study[J]. Lancet Respir Med, 2015, 3(4):301-309. |
[24] | Duffy AG, Ulahannan SV, Makorova-Rusher O, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma[J]. J Hepatol, 2017, 66(3):545-551. |
[25] | Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Ove-rall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma[J]. N Engl J Med, 2017, 377(14):1345-1356. |
[26] | Tawbi HA, Forsyth PA, Algazi A, et al. Combined Nivolumab and Ipilimumab in Melanoma Metastatic to the Brain[J]. N Engl J Med, 2018, 379(8):722-730. |
[27] | He Y, Cao J, Zhao C, et al. TIM-3, a promising target for cancer immunotherapy[J]. Onco Targets Ther, 2018, 11:7005-7009. |
[28] | Long L, Zhang X, Chen F, et al. The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy[J]. Genes Cancer, 2018, 9(5-6):176-189. |
[29] | Wang J, Sun J, Liu LN, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy[J]. Nat Med, 2019, 25(4):656-666. |
[30] | Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26):2443-2454. |
[31] | Lupo A, Alifano M, Wislez M, et al. Biomarkers predictive of PD1/PD-L1 immunotherapy in non-small cell lung cancer[J]. Rev Pneumol Clin, 2018, 74(5):339-350. |
[32] | Chae YK, Pan A, Davis AA, et al. Biomarkers for PD-1/PD-L1 Blockade Therapy in Non-Small-cell Lung Cancer: Is PD-L1 Expression a Good Marker for Patient Selection?[J]. Clin Lung Cancer, 2016, 17(5):350-361. |
[33] | Antonia SJ, López-Martin JA, Bendell J, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial[J]. Lancet Oncol, 2016, 17(7):883-895. |
[34] | Kluger HM, Zito CR, Turcu G, et al. PD-L1 Studies Across Tumor Types, Its Differential Expression and Predictive Value in Patients Treated with Immune Checkpoint Inhibitors[J]. Clin Cancer Res, 2017, 23(15):4270-4279. |
[35] | Doroshow DB, Sanmamed MF, Hastings K, et al. Immunotherapy in Non-Small Cell Lung Cancer: Facts and Hopes[J]. Clin Cancer Res, 2019, 25(15):4592-4602. |
[36] | Stovgaard ES, Dyhl-Polk A, Roslind A, et al. PD-L1 expression in breast cancer: expression in subtypes and prognostic significance: a systematic review[J]. Breast Cancer Res Treat, 2019, 174(3):571-584. |
[37] | Berland L, Heeke S, Humbert O, et al. Current views on tumor mutational burden in patients with non-small cell lung cancer treated by immune checkpoint inhibitors[J]. J Thorac Dis, 2019, 11(Suppl 1):S71-S80. |
[38] | Wang RF, Wang HY. Immune targets and neoantigens for cancer immunotherapy and precision medicine[J]. Cell Res, 2017, 27(1):11-37. |
[39] | Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230):124-128. |
[40] | Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial[J]. Lancet, 2016, 387(10031):1909-1920. |
[41] | Mandal R, Chan TA. Personalized Oncology Meets Immunology: The Path toward Precision Immunotherapy[J]. Cancer Discov, 2016, 6(7):703-713. |
[42] | Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349):409-413. |
[43] | Colle R, Cohen R, Cochereau D, et al. Immunotherapy and patients treated for cancer with microsatellite instability[J]. Bull Cancer, 2017, 104(1):42-51. |
[44] | Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blocka-de induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528):568-571. |
[45] | Daud AI, Loo K, Pauli ML, et al. Tumor immune profi-ling predicts response to anti-PD-1 therapy in human melanoma[J]. J Clin Invest, 2016, 126(9):3447-3452. |
[46] | Krieg C, Nowicka M, Guglietta S, et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy[J]. Nat Med, 2018, 24(2):144-153. |
[47] | Capone M, Giannarelli D, Mallardo D, et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab[J]. J Immunother Cancer, 2018, 6(1):74. |
[48] | Das R, Bar N, Ferreira M, et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade[J]. J Clin Invest, 2018, 128(2):715-720. |
[49] | Lim SY, Lee JH, Gide TN, et al. Circulating Cytokines Predict Immune-Related Toxicity in Melanoma Patients Receiving Anti-PD-1-Based Immunotherapy[J]. Clin Cancer Res, 2019, 25(5):1557-1563. |
[50] | Felix J, Cassinat B, Porcher R, et al. Relevance of serum biomarkers associated with melanoma during follow-up of anti-CTLA-4 immunotherapy[J]. Int Immunopharmacol, 2016, 40:466-473. |
[51] | Nagato T, Ohkuri T, Ohara K, et al. Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy[J]. Cancer Immunol Immunother, 2017, 66(7):877-890. |
[52] | Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J]. Nature, 2018, 560(7718):382-386. |
[53] | Li L, Zhang J, Jiang X, et al. Promising clinical application of ctDNA in evaluating immunotherapy efficacy[J]. Am J Cancer Res, 2018, 8(10):1947-1956. |
[54] | Goldberg SB, Narayan A, Kole AJ, et al. Early Assessment of Lung Cancer Immunotherapy Response via Circulating Tumor DNA[J]. Clin Cancer Res, 2018, 24(8):1872-1880. |
[55] | Boeri M, Milione M, Proto C, et al. Circulating miRNAs and PD-L1 Tumor Expression Are Associated with Survival in Advanced NSCLC Patients Treated with Immunotherapy: a Prospective Study[J]. Clin Cancer Res, 2019, 25(7):2166-2173. |
[56] | Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371):97-103. |
/
〈 |
|
〉 |