诊断学理论与实践 ›› 2019, Vol. 18 ›› Issue (04): 387-393.doi: 10.16150/j.1671-2870.2019.04.003
收稿日期:
2019-05-10
出版日期:
2019-08-25
发布日期:
2019-08-25
通讯作者:
陈福祥
E-mail:chenfx@sjtu.edu.cn
Received:
2019-05-10
Online:
2019-08-25
Published:
2019-08-25
中图分类号:
罗清琼, 陈福祥. 肿瘤免疫治疗策略的转变及相关标志物研究现状[J]. 诊断学理论与实践, 2019, 18(04): 387-393.
[1] |
Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy[J]. Clin Cancer Res, 2015, 21(4):687-692.
doi: 10.1158/1078-0432.CCR-14-1860 URL |
[2] |
Allard B, Aspeslagh S, Garaud S, et al. Immuno-oncology-101: overview of major concepts and translational perspectives[J]. Semin Cancer Biol, 2018, 52(Pt 2):1-11.
doi: S1044-579X(17)30233-X pmid: 29428479 |
[3] |
Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point[J]. Nature, 2017, 541(7637):321-330.
doi: 10.1038/nature21349 URL |
[4] | Sambi M, Bagheri L, Szewczuk MR. Current Challenges in Cancer Immunotherapy: Multimodal Approaches to Improve Efficacy and Patient Response Rates[J]. J Oncol, 2019, 2019:4508794. |
[5] |
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382):1350-1355.
doi: 10.1126/science.aar4060 URL |
[6] |
Coley WB . II. Contribution to the Knowledge of Sarcoma[J]. Ann Surg, 1891, 14(3):199-220.
doi: 10.1097/00000658-189112000-00015 pmid: 17859590 |
[7] |
Sanmamed MF, Chen L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization[J]. Cell, 2018 Oct 4, 175(2):313-326.
doi: S0092-8674(18)31247-9 pmid: 30290139 |
[8] |
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle[J]. Immunity, 2013, 39(1):1-10.
doi: 10.1016/j.immuni.2013.07.012 URL |
[9] | Medon M, Vidacs E, Vervoort SJ, et al. HDAC Inhibitor Panobinostat Engages Host Innate Immune Defenses to Promote the Tumoricidal Effects of Trastuzumab in HER2+ Tumors[J]. Cancer Res, 2017, 77(10):2594-2606. |
[10] |
Chen R, Hou J, Newman E, et al. CD30 Downregulation, MMAE Resistance, and MDR1 Upregulation Are All Associated with Resistance to Brentuximab Vedotin[J]. Mol Cancer Ther, 2015, 14(6):1376-1384.
doi: 10.1158/1535-7163.MCT-15-0036 URL |
[11] |
Shindo Y, Hazama S, Maeda Y, et al. Adoptive immunotherapy with MUC1-mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer[J]. J Transl Med, 2014, 12:175.
doi: 10.1186/1479-5876-12-175 URL |
[12] |
Mittica G, Capellero S, Genta S, et al. Adoptive immunotherapy against ovarian cancer[J]. J Ovarian Res, 2016, 9(1):30.
doi: 10.1186/s13048-016-0236-9 pmid: 27188274 |
[13] |
Gao X, Mi Y, Guo N, et al. Cytokine-Induced Killer Cells As Pharmacological Tools for Cancer Immunotherapy[J]. Front Immunol, 2017, 8:774.
doi: 10.3389/fimmu.2017.00774 URL |
[14] |
Patel S, Burga RA, Powell AB, et al. Beyond CAR T Cells: Other Cell-Based Immunotherapeutic Strategies Against Cancer[J]. Front Oncol, 2019, 9:196.
doi: 10.3389/fonc.2019.00196 URL |
[15] |
Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering[J]. Nature, 2017, 545(7655):423-431.
doi: 10.1038/nature22395 URL |
[16] |
Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer[J]. N Engl J Med, 2010, 363(5):411-422.
doi: 10.1056/NEJMoa1001294 URL |
[17] |
Klener P Jr, Otáhal P, Lateckova L, et al. Immunotherapy Approaches in Cancer Treatment[J]. Curr Pharm Biotechnol, 2015, 16(9):771-781.
doi: 10.2174/1389201016666150619114554 URL |
[18] |
Melero I, Gaudernack G, Gerritsen W, et al. Therapeutic vaccines for cancer: an overview of clinical trials[J]. Nat Rev Clin Oncol, 2014, 11(9):509-524.
doi: 10.1038/nrclinonc.2014.111 URL |
[19] |
Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizu-mab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial[J]. Lancet, 2016, 387(10030):1837-1846.
doi: 10.1016/S0140-6736(16)00587-0 pmid: 26970723 |
[20] |
Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolu-mab for Recurrent Squamous-Cell Carcinoma of the Head and Neck[J]. N Engl J Med, 2016, 375(19):1856-1867.
doi: 10.1056/NEJMoa1602252 URL |
[21] |
Wolchok JD, Weber JS, Maio M, et al. Four-year survival rates for patients with metastatic melanoma who received ipilimumab in phase II clinical trials[J]. Ann Oncol, 2013, 24(8):2174-2180.
doi: 10.1093/annonc/mdt161 pmid: 23666915 |
[22] |
Chiarion-Sileni V, Pigozzo J, Ascierto PA, et al. Ipilimumab retreatment in patients with pretreated advanced melanoma: the expanded access programme in Italy[J]. Br J Cancer, 2014, 110(7):1721-1726.
doi: 10.1038/bjc.2014.126 URL |
[23] |
Calabrò L, Morra A, Fonsatti E, et al. Efficacy and safety of an intensified schedule of tremelimumab for chemotherapy-resistant malignant mesothelioma: an open-label, single-arm, phase 2 study[J]. Lancet Respir Med, 2015, 3(4):301-309.
doi: 10.1016/S2213-2600(15)00092-2 pmid: 25819643 |
[24] |
Duffy AG, Ulahannan SV, Makorova-Rusher O, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma[J]. J Hepatol, 2017, 66(3):545-551.
doi: 10.1016/j.jhep.2016.10.029 URL |
[25] |
Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Ove-rall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma[J]. N Engl J Med, 2017, 377(14):1345-1356.
doi: 10.1056/NEJMoa1709684 URL |
[26] |
Tawbi HA, Forsyth PA, Algazi A, et al. Combined Nivolumab and Ipilimumab in Melanoma Metastatic to the Brain[J]. N Engl J Med, 2018, 379(8):722-730.
doi: 10.1056/NEJMoa1805453 URL |
[27] |
He Y, Cao J, Zhao C, et al. TIM-3, a promising target for cancer immunotherapy[J]. Onco Targets Ther, 2018, 11:7005-7009.
doi: 10.2147/OTT.S170385 URL |
[28] |
Long L, Zhang X, Chen F, et al. The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy[J]. Genes Cancer, 2018, 9(5-6):176-189.
doi: 10.18632/genesandcancer.180 pmid: 30603054 |
[29] |
Wang J, Sun J, Liu LN, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy[J]. Nat Med, 2019, 25(4):656-666.
doi: 10.1038/s41591-019-0374-x pmid: 30833750 |
[30] |
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26):2443-2454.
doi: 10.1056/NEJMoa1200690 URL |
[31] |
Lupo A, Alifano M, Wislez M, et al. Biomarkers predictive of PD1/PD-L1 immunotherapy in non-small cell lung cancer[J]. Rev Pneumol Clin, 2018, 74(5):339-350.
doi: S0761-8417(18)30215-3 pmid: 30337201 |
[32] |
Chae YK, Pan A, Davis AA, et al. Biomarkers for PD-1/PD-L1 Blockade Therapy in Non-Small-cell Lung Cancer: Is PD-L1 Expression a Good Marker for Patient Selection?[J]. Clin Lung Cancer, 2016, 17(5):350-361.
doi: 10.1016/j.cllc.2016.03.011 URL |
[33] |
Antonia SJ, López-Martin JA, Bendell J, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial[J]. Lancet Oncol, 2016, 17(7):883-895.
doi: S1470-2045(16)30098-5 pmid: 27269741 |
[34] |
Kluger HM, Zito CR, Turcu G, et al. PD-L1 Studies Across Tumor Types, Its Differential Expression and Predictive Value in Patients Treated with Immune Checkpoint Inhibitors[J]. Clin Cancer Res, 2017, 23(15):4270-4279.
doi: 10.1158/1078-0432.CCR-16-3146 URL |
[35] |
Doroshow DB, Sanmamed MF, Hastings K, et al. Immunotherapy in Non-Small Cell Lung Cancer: Facts and Hopes[J]. Clin Cancer Res, 2019, 25(15):4592-4602.
doi: 10.1158/1078-0432.CCR-18-1538 pmid: 30824587 |
[36] |
Stovgaard ES, Dyhl-Polk A, Roslind A, et al. PD-L1 expression in breast cancer: expression in subtypes and prognostic significance: a systematic review[J]. Breast Cancer Res Treat, 2019, 174(3):571-584.
doi: 10.1007/s10549-019-05130-1 URL |
[37] | Berland L, Heeke S, Humbert O, et al. Current views on tumor mutational burden in patients with non-small cell lung cancer treated by immune checkpoint inhibitors[J]. J Thorac Dis, 2019, 11(Suppl 1):S71-S80. |
[38] |
Wang RF, Wang HY. Immune targets and neoantigens for cancer immunotherapy and precision medicine[J]. Cell Res, 2017, 27(1):11-37.
doi: 10.1038/cr.2016.155 URL |
[39] |
Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230):124-128.
doi: 10.1126/science.aaa1348 URL |
[40] |
Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial[J]. Lancet, 2016, 387(10031):1909-1920.
doi: 10.1016/S0140-6736(16)00561-4 pmid: 26952546 |
[41] |
Mandal R, Chan TA. Personalized Oncology Meets Immunology: The Path toward Precision Immunotherapy[J]. Cancer Discov, 2016, 6(7):703-713.
doi: 10.1158/2159-8290.CD-16-0146 URL |
[42] |
Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349):409-413.
doi: 10.1126/science.aan6733 URL |
[43] |
Colle R, Cohen R, Cochereau D, et al. Immunotherapy and patients treated for cancer with microsatellite instability[J]. Bull Cancer, 2017, 104(1):42-51.
doi: 10.1016/j.bulcan.2016.11.006 URL |
[44] |
Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blocka-de induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528):568-571.
doi: 10.1038/nature13954 URL |
[45] |
Daud AI, Loo K, Pauli ML, et al. Tumor immune profi-ling predicts response to anti-PD-1 therapy in human melanoma[J]. J Clin Invest, 2016, 126(9):3447-3452.
doi: 10.1172/JCI87324 URL |
[46] | Krieg C, Nowicka M, Guglietta S, et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy[J]. Nat Med, 2018, 24(2):144-153. |
[47] |
Capone M, Giannarelli D, Mallardo D, et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab[J]. J Immunother Cancer, 2018, 6(1):74.
doi: 10.1186/s40425-018-0383-1 URL |
[48] |
Das R, Bar N, Ferreira M, et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade[J]. J Clin Invest, 2018, 128(2):715-720.
doi: 10.1172/JCI96798 URL |
[49] |
Lim SY, Lee JH, Gide TN, et al. Circulating Cytokines Predict Immune-Related Toxicity in Melanoma Patients Receiving Anti-PD-1-Based Immunotherapy[J]. Clin Cancer Res, 2019, 25(5):1557-1563.
doi: 10.1158/1078-0432.CCR-18-2795 pmid: 30409824 |
[50] |
Felix J, Cassinat B, Porcher R, et al. Relevance of serum biomarkers associated with melanoma during follow-up of anti-CTLA-4 immunotherapy[J]. Int Immunopharmacol, 2016, 40:466-473.
doi: 10.1016/j.intimp.2016.09.030 URL |
[51] |
Nagato T, Ohkuri T, Ohara K, et al. Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy[J]. Cancer Immunol Immunother, 2017, 66(7):877-890.
doi: 10.1007/s00262-017-1987-x URL |
[52] |
Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J]. Nature, 2018, 560(7718):382-386.
doi: 10.1038/s41586-018-0392-8 URL |
[53] |
Li L, Zhang J, Jiang X, et al. Promising clinical application of ctDNA in evaluating immunotherapy efficacy[J]. Am J Cancer Res, 2018, 8(10):1947-1956.
pmid: 30416847 |
[54] |
Goldberg SB, Narayan A, Kole AJ, et al. Early Assessment of Lung Cancer Immunotherapy Response via Circulating Tumor DNA[J]. Clin Cancer Res, 2018, 24(8):1872-1880.
doi: 10.1158/1078-0432.CCR-17-1341 pmid: 29330207 |
[55] |
Boeri M, Milione M, Proto C, et al. Circulating miRNAs and PD-L1 Tumor Expression Are Associated with Survival in Advanced NSCLC Patients Treated with Immunotherapy: a Prospective Study[J]. Clin Cancer Res, 2019, 25(7):2166-2173.
doi: 10.1158/1078-0432.CCR-18-1981 URL |
[56] |
Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371):97-103.
doi: 10.1126/science.aan4236 pmid: 29097493 |
[1] | 武冬冬, 陈玉辉, 刘芳, 刘银红, 蒋景文. 脑小血管疾病合并中枢神经系统退行性疾病机制的研究进展[J]. 诊断学理论与实践, 2022, 21(05): 644-649. |
[2] | 周思锋, 徐海舒, 范欣生. 基于不同生物样本代谢组学的OSAHS生物标志物研究进展[J]. 诊断学理论与实践, 2022, 21(04): 535-540. |
[3] | 陈海燕, 杨小宝, 许大康. 新生物标志物在胃肠道肿瘤中疗效预测和预后价值的研究进展[J]. 诊断学理论与实践, 2019, 18(06): 704-710. |
[4] | 杜坤, 杨喜, 卞炳贤, 任懿倩, 张广慧. 血清presepsin(sCD14-ST)、降钙素原、C反应蛋白和白介细胞素-6诊断血流细菌感染的诊断性能比较[J]. 诊断学理论与实践, 2018, 17(05): 581-585. |
[5] | 崔诗爽, 陈生弟, 王刚. 帕金森病体液生物标志物研究进展[J]. 诊断学理论与实践, 2018, 17(04): 471-476. |
[6] | 娄加陶, 张宸梓. 外泌体的检测及临床应用[J]. 诊断学理论与实践, 2018, 17(02): 141-146. |
[7] | 牟姗, 陈哲君, 谢园园. 生物标志物在肾脏损伤诊断中的临床应用[J]. 诊断学理论与实践, 2017, 16(04): 358-362. |
[8] | 商慧芳, 陈永平,. 帕金森病生物标志物的研究现状及展望[J]. 诊断学理论与实践, 2016, 15(02): 92-95. |
[9] | 张月琪, 任汝静, 王刚,. 尿液生物标志物对痴呆诊断价值的研究进展[J]. 诊断学理论与实践, 2016, 15(02): 190-194. |
[10] | 杨舟, 王世东, 程磊, 程莉, 陶生策, 宋凯, 张庆华,. 基于凝集素芯片的蛋白质糖基化修饰检测方法[J]. 诊断学理论与实践, 2015, 14(05): 455-460. |
[11] | 徐莹, 王正廷, 钟捷,. 嗜铬素A在胃肠胰神经内分泌肿瘤诊断及预后判断中的意义[J]. 诊断学理论与实践, 2015, 14(01): 79-82. |
[12] | 姚洁洁, 张静雯, 朱樱, 张晓晓, 詹维伟, 费晓春,. 乳腺导管内癌微浸润癌分子生物标志物的表达及其与超声表现的相关性[J]. 诊断学理论与实践, 2014, 13(06): 588-592. |
[13] | 林继先, 赵静,. 生物标志物在缺血性脑卒中应用的研究进展[J]. 诊断学理论与实践, 2013, 12(03): 363-366. |
[14] | 张璐, 陈楠,. 尿液生物标志物在急性肾损伤早期诊断中的价值[J]. 诊断学理论与实践, 2011, 10(06): 575-579. |
[15] | 王银娜, 谌贻璞,. Ⅰ型心肾综合征的诊断标准及心肾损害的生物标志物[J]. 诊断学理论与实践, 2011, 10(03): 192-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||