论著

肺炎克雷伯菌中携带碳青霉烯酶KPC-2基因的质粒分型

展开
  • 1.同济大学附属第一妇婴保健院检验科, 上海 200040;
    2.复旦大学附属华山医院检验科, 上海 200040

收稿日期: 2018-09-05

  网络出版日期: 2018-12-25

Plasmids typing of genes carrying blaKPC-2 in Klebsiella pneumoniae isolated at a tertiary hospital in Shanghai

Expand
  • 1. Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 200040, China;
    2. Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China

Received date: 2018-09-05

  Online published: 2018-12-25

摘要

目的:观察华山医院临床耐碳青霉烯类肺炎克雷伯菌中携带blaKPC-2质粒的分型情况, 以了解其流行变迁。方法:共收集华山医院临床连续不重复的blaKPC-2阳性碳青霉烯类耐药肺炎克雷伯菌38株, 对其进行多位点序列分型(multilocus sequence typing, MLST)分型, 并用松弛酶对质粒进行分型。结果:8株肺炎克雷伯菌所携带的blaKPC-2阳性质粒属于MOBP3亚型, 另30株均为MOBF12亚型。同时, 进化树显示, 本批菌株所含有的MOBF12亚型质粒位于2个不同分支上, 提示该批菌株的MOBF12亚型质粒具有不同的生物来源。结论:首次运用松弛酶对肺炎克雷伯菌所携带的blaKPC-2阳性质粒进行分型, 发现其中8株属于MOBP3亚型, 30株为MOBF12亚型, 且MOBF12亚型菌株具有不同的生物来源, 反映了华山医院临床耐碳青霉烯类肺炎克雷伯菌中携带blaKPC-2质粒的多样性。

本文引用格式

沈平华, 张贤华, 蒋晓飞, 陈慧芬 . 肺炎克雷伯菌中携带碳青霉烯酶KPC-2基因的质粒分型[J]. 诊断学理论与实践, 2018 , 17(06) : 640 -644 . DOI: 10.16150/j.1671-2870.2018.06.004

Abstract

Objective: To investigate the plasmids typing of genes carrying blaKPC-2 in carbapenemase resistant Klebsiella pneumoniae for exploring its epidemiological evolution. Methods: Thirty-eight carbapenem -resistant Klebsiella pneumoniae isolates obtained consecutively from Huashan Hospital were collected, all carrying blaKPC-2-bearing plasmids. All the strains were subjected to multilocus sequence typing (MLST). Relaxase analysis was used to classify these plasmids. Results: Eight of the blaKPC-2-bearing plasmids belonged to the MOBP3 and 30 blaKPC-2-bearing plasmids belonged to the MOBF12. Phylogenetic analysis revealed that the MOBF12 plasmids were located at two different branches, respectively, suggesting they had different biological origin. Conclusions: It is the first time that relaxase has been used for plasmids typing of genes carrying blaKPC-2 in carbapenemase resistant Klebsiella pneumoniae, and found 8 belonged to the MOBP3 and 30 belonged to the MOBF12, and the MOBF12 having different biological origin, denoting the epidemiological evolution of blaKPC-2 bearing plasmid in carbapenemase resistant Klebsiella pneumoniae.

参考文献

[1] Galani I, Karaiskos I, Karantani I, et al.Epidemiology and resistance phenotypes of carbapenemase-producing Klebsiella pneumoniae in Greece, 2014 to 2016[J]. Euro Surveill,2018,23(31).
[2] Porreca AM, Sullivan KV, Gallagher JC. The Epidemio-logy, Evolution, and Treatment of KPC-Producing Orga-nisms[J]. Curr Infect Dis Rep,2018,20(6):13.
[3] Munoz-Price LS, Quinn JP.The spread of Klebsiella pneumoniae carbapenemases: a tale of strains, plasmids, and transposons[J]. Clin Infect Dis,2009,49(11):1739-1741.
[4] Becker L, Kaase M, Pfeifer Y, et al.Genome-based analysis of Carbapenemase-producing Klebsiella pneumoniae isolates from German hospital patients, 2008-2014[J]. Antimicrob Resist Infect Control,2018,7:62.
[5] Cuzon G, Naas T, Truong H, et al.Worldwide diversity of Klebsiella pneumoniae that produce beta-lactamase blaKPC-2 gene[J]. Emerg Infect Dis,2010,16(9):1349-1356.
[6] Tang Y, Shen P, Liang W, et al.A putative multi-replicon plasmid co-harboring beta-lactamase genes blaKPC-2, blaCTX-M-14 and blaTEM-1 and trimethoprim resistance gene dfrA25 from a Klebsiella pneumoniae sequence type(ST) 11 strain in China[J]. PLoS One,2017,12(2):e0171339.
[7] Pérez-Chaparro PJ, Cerdeira LT, Queiroz MG, et al.Complete nucleotide sequences of two blaKPC-2-bearing IncN Plasmids isolated from sequence type 442 Klebsiella pneumoniae clinical strains four years apart[J]. Antimicrob Agents Chemother,2014,58(5):2958-2960.
[8] Andrade LN, Vitali L, Gaspar GG, et al.Expansion and evolution of a virulent, extensively drug-resistant (polymyxin B-resistant), QnrS1-, CTX-M-2-, and KPC-2-producing Klebsiella pneumoniae ST11 international high-risk clone[J]. J Clin Microbiol,2014,52(7):2530-2535.
[9] Leplae R, Lima-Mendez G, Toussaint A.A first global analysis of plasmid encoded proteins in the ACLAME database[J]. FEMS Microbiol Rev,2006,30(6):980-994.
[10] Guasch A, Lucas M, Moncalián G, et al.Recognition and processing of the origin of transfer DNA by conjugative relaxase TrwC[J]. Nat Struct Biol,2003,10(12):1002-1010.
[11] Garcillán-Barcia MP, Francia MV, de la Cruz F. The diversity of conjugative relaxases and its application in plasmid classification[J]. FEMS Microbiol Rev,2009,33(3):657-687.
[12] Jiang Y, Yu D, Wei Z, et al.Complete nucleotide sequence of Klebsiella pneumoniae multidrug resistance plasmid pKP048, carrying blaKPC-2, blaDHA-1, qnrB4, and armA[J]. Antimicrob Agents Chemother,2010,54(9):3967-3969.
[13] Lomaestro BM, Tobin EH, Shang W, et al.The spread of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae to upstate New York[J]. Clin Infect Dis,2006,43(3):e26-e28.
[14] Li G, Zhang Y, Bi D, et al.First report of a clinical, multidrug-resistant Enterobacteriaceae isolate coharboring fosfomycin resistance gene fosA3 and carbapenemase gene blaKPC-2 on the same transposon, Tn1721[J]. Antimicrob Agents Chemother, 2015,59(1):338-343.
[15] Carattoli 1, Bertini A, Villa L, et al. Identification of plasmids by PCR-based replicon typing[J]. J Microbiol Methods,2005,63(3):219-228.
[16] Tamura K, Peterson D, Peterson N, et al.MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol,2011,28(10):2731-2739.
[17] Kumar S, Tamura K, Nei M.MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment[J]. Brief Bioinform,2004,5(2):150-163.
[18] Francia MV, Varsaki A, Garcillán-Barcia MP, et al.A classification scheme for mobilization regions of bacterial plasmids[J]. FEMS Microbiol Rev,2004,28(1):79-100.
[19] Novick RP.Plasmid incompatibility[J]. Microbiol Rev, 1987,51(4):381-395.
[20] Austin S, Nordström K.Partition-mediated incompatibility of bacterial plasmids[J]. Cell,1990,60(3):351-354.
[21] Nikoletti S, Bird P, Praszkier J, et al.Analysis of the incompatibility determinants of I-complex plasmids[J]. J Bacteriol,1988,170(3):1311-1318.
[22] Sesma A, Sundin GW, Murillo J.Closely related plasmid replicons coexisting in the phytopathogen pseudomonas syringae show a mosaic organization of the replication region and altered incompatibility behavior[J]. Appl Environ Microbiol,1998,64(10):3948-3953.
[23] Camps M.Modulation of ColE1-like plasmid replication for recombinant gene expression[J]. Recent Pat DNA Gene Seq,2010,4(1):58-73.
[24] Shintani M.The behavior of mobile genetic elements (MGEs) in different environments[J]. Biosci Biotechnol Biochem,2017,81(5):854-862.
[25] Boyd EF, Hill CW, Rich SM, et al.Mosaic structure of plasmids from natural populations of Escherichia coli[J]. Genetics,1996,143(3):1091-1100.
[26] Osborn AM, da Silva Tatley FM, et al. Mosaic plasmids and mosaic replicons: evolutionary lessons from the ana-lysis of genetic diversity in IncFII-related replicons[J]. Microbiology,2000,146(Pt 9):2267-2275.
[27] arado A, Garcillán-Barcia MP, de la Cruz F. A degene-rate primer MOB typing (DPMT) method to classify gamma-proteobacterial plasmids in clinical and environmental settings[J]. PLoS One,2012,7(7):e40438.
[28] Deleo FR, Chen L, Porcella SF, et al.Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae[J]. Proc Natl Acad Sci U S A,2014,111(13):4988-4993.
[29] Liu Y, Li XY, Wan LG, et al.Acquisition of carbapenem resistance in multiresistant Klebsiella pneumoniae isolates of sequence type 11 at a university hospital in China[J]. Diagn Microbiol Infect Dis,2013,76(2):241-243.
[30] Chen CM, Guo MK, Ke SC, et al.Emergence and nosocomial spread of ST11 carbapenem-resistant Klebsiella pneumoniae co-producing OXA-48 and KPC-2 in a regional hospital in Taiwan[J]. J Med Microbiol,2018,6.
[31] Liu Z, Gu Y, Li X, et al.Identification and Characterization of NDM-1-producing Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae in China[J]. Ann Lab Med,2019,39(2):167-175.
文章导航

/