专家论坛

儿童遗传性肾脏病的分类及诊治进展

展开
  • 上海市儿童医院 上海交通大学附属儿童医院肾脏风湿免疫科,上海 200062

收稿日期: 2020-03-31

  网络出版日期: 2022-06-28

基金资助

上海市卫生系统优秀人才培养计划(2018YQ21);上海自然科学基金(19ZR1442300)

本文引用格式

匡新宇, 黄文彦 . 儿童遗传性肾脏病的分类及诊治进展[J]. 诊断学理论与实践, 2021 , 20(02) : 117 -124 . DOI: 10.16150/j.1671-2870.2021.02.001

参考文献

[1] Mehta L, Jim B. Hereditary renal diseases[J]. Semin Nephrol, 2017, 37(4):354-361.
[2] Emma F, Montini G, Parikh SM, et al. Mitochondrial dysfunction in inherited renal disease and acute kidney injury[J]. Nat Rev Nephrol, 2016, 12(5):267-280.
[3] Connaughton DM, Kennedy C, Shril S, et al. Monogenic causes of chronic kidney disease in adults[J]. Kidney Int, 2019, 95(4):914-928.
[4] Murray SL, Fennelly NK, Doyle B, et al. Integration of genetic and histopathology data in interpretation of kidney disease[J]. Nephrol Dial Transplant, 2020, 35(7):1113-1132.
[5] Leung JC. Inherited renal diseases[J]. Curr Pediatr Rev, 2014, 10(2):95-100.
[6] Devuyst O, Knoers NV, Remuzzi G, et al. Rare inherited kidney diseases: challenges, opportunities, and perspectives[J]. Lancet, 2014, 383(9931):1844-1859.
[7] Edvardsson VO, Goldfarb DS, Lieske JC, et al. Hereditary causes of kidney stones and chronic kidney disease[J]. Pediatr Nephrol, 2013, 28(10):1923-1942.
[8] Bullich G, Domingo-Gallego A, Vargas I, et al. A kidney-disease gene panel allows a comprehensive genetic diagnosis of cystic and glomerular inherited kidney diseases[J]. Kidney Int, 2018, 94(2):363-371.
[9] van der Wijst J, Belge H, Bindels RJM, et al. Learning physiology from inherited kidney disorders[J]. Physiol Rev, 2019, 99(3):1575-1653.
[10] Daga A, Majmundar AJ, Braun DA, et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis[J]. Kidney Int, 2018, 93(1):204-213.
[11] Parenti G, Andria G, Ballabio A. Lysosomal storage di-seases: from pathophysiology to therapy[J]. Annu Rev Med, 2015, 66:471-486.
[12] Hamosh A, Scott AF, Amberger J, et al. Online Mendelian Inheritance in Man (OMIM), a knowledge base of human genes and genetic disorders[J]. Nucleic Acids Res, 2002, 30(1):52-55.
[13] Groopman EE, Gharavi AG. Expanding opportunities and emerging challenges: broadening the scope of genetic testing in nephrology[J]. Kidney Int, 2019, 95(4):743-746.
[14] Narzisi G, Schatz MC. The challenge of small-scale repeats for indel discovery[J]. Front Bioeng Biotechnol, 2015, 3:8.
[15] Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010, 38(16):e164.
[16] Priest JR. A primer to clinical genome sequencing[J]. Curr Opin Pediatr, 2017, 29(5):513-519.
[17] Kono N, Arakawa K. Nanopore sequencing: review of potential applications in functional genomics[J]. Dev Growth Differ, 2019, 61(5):316-326.
[18] Joly D, Béroud C, Grünfeld JP. Rare inherited disorders with renal involvement-approach to the patient[J]. Kidney Int, 2015, 87(5):901-908.
[19] Lemaire M, Parekh RS. A perspective on inherited kidney disease: lessons for practicing nephrologists[J]. Clin J Am Soc Nephrol, 2017, 12(12):1914-1916.
[20] Trautmann A, Lipska-Zietkiewicz BS, Schaefer F. Explo-ring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: the PodoNet Registry[J]. Front Pediatr, 2018, 6:200.
[21] Gianesello L, Del Prete D, Anglani F, et al. Genetics and phenotypic heterogeneity of Dent disease: the dark side of the moon[J]. Hum Genet, 2021, 140(3):401-421.
[22] Luo F, Tao YH. Nephronophthisis: a review of genotype-phenotype correlation[J]. Nephrology (Carlton), 2018, 23(10):904-911.
[23] van Dam TJP, Kennedy J, van der Lee R, et al. Cilia Carta: an integrated and validated compendium of ciliary genes[J]. PLoS One, 2019, 14(5):e0216705.
[24] McConnachie DJ, Stow JL, Mallett AJ. Ciliopathies and the kidney: a review[J]. Am J Kidney Dis, 2021, 77(3):410-419.
[25] Simms RJ, Eley L, Sayer JA. Nephronophthisis[J]. Eur J Hum Genet, 2009, 17(4):406-416.
[26] Wolf MT. Nephronophthisis and related syndromes[J]. Curr Opin Pediatr, 2015, 27(2):201-211.
[27] Gimpel C, Bergmann C, Bockenhauer D, et al. International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people[J]. Nat Rev Nephrol, 2019, 15(11):713-726.
[28] Bergmann C, Guay-Woodford LM, Harris PC, et al. Polycystic kidney disease[J]. Nat Rev Dis Primers, 2018, 4(1):50.
[29] Groopman EE, Marasa M, Cameron-Christie S, et al. Diagnostic utility of exome sequencing for kidney disease[J]. N Engl J Med, 2019, 380(2):142-151.
[30] Devuyst O, Olinger E, Weber S, et al. Autosomal dominant tubulointerstitial kidney disease[J]. Nat Rev Dis Primers, 2019: 5(1):60.
[31] Clissold RL, Hamilton AJ, Hattersley AT, et al. HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum[J]. Nat Rev Nephrol, 2015, 11(2):102-112.
[32] Bolar NA, Golzio C ivná M, et al. Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia[J]. Am J Hum Genet, 2016, 99(1):174-187.
[33] Imafuku A, Nozu K, Sawa N, et al. How to resolve confusion in the clinical setting for the diagnosis of heterozygous COL4A3 or COL4A4 gene variants? Discussion and suggestions from nephrologists[J]. Clin Exp Nephrol, 2020, 24(8):651-656.
[34] Barker DF, Hostikka SL, Zhou J, et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome[J]. Science, 1990, 248(4960):1224-1227.
[35] Kuang X, Sun L, Wu Y, et al. A novel missense mutation of COL4A5 gene alter collagen Ⅳ α5 chain to cause X-linked Alport syndrome in a Chinese family[J]. Transl Pediatr, 2020, 9(5):587-595.
[36] Mochizuki T, Lemmink HH, Mariyama M, et al. Identification of mutations in the alpha 3(Ⅳ) and alpha 4(Ⅳ) collagen genes in autosomal recessive Alport syndrome[J]. Nat Genet, 1994, 8(1):77-81.
[37] Lemmink HH, Nillesen WN, Mochizuki T, et al. Benign familial hematuria due to mutation of the type Ⅳ collagen alpha 4 gene[J]. J Clin Invest, 1996, 98(5):1114-1118.
[38] Woroniecki RP, Kopp JB. Genetics of focal segmental glomerulosclerosis[J]. Pediatr Nephrol, 2007, 22(5):638-644.
[39] Saleem MA. Molecular stratification of idiopathic nephro-tic syndrome[J]. Nat Rev Nephrol, 2019, 15(12):750-765.
[40] Kitiyakara C, Eggers P, Kopp JB. Twenty-one-year trend in ESRD due to focal segmental glomerulosclerosis in the United States[J]. Am J Kidney Dis, 2004, 44(5):815-825.
[41] Trautmann A, Bodria M, Ozaltin F, et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort[J]. Clin J Am Soc Nephrol, 2015, 10(4):592-600.
[42] Sadowski CE, Lovric S, Ashraf S, et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome[J]. J Am Soc Nephrol, 2015, 26(6):1279-1289.
[43] Park E, Lee C, Kim NKD, et al. Genetic study in Korean pediatric patients with steroid-resistant nephrotic syndrome or focal segmental glomerulosclerosis[J]. J Clin Med, 2020, 9(6):2013.
[44] van der Veen SJ, Hollak CEM, et al. Developments in the treatment of Fabry disease[J]. J Inherit Metab Dis, 2020, 43(5):908-921.
[45] Torra R, Furlano M. New therapeutic options for Alport syndrome[J]. Nephrol Dial Transplant, 2019, 34(8):1272-1279.
[46] Cochat P, Fargue S, Mestrallet G, et al. Disease recurrence in paediatric renal transplantation[J]. Pediatr Nephrol, 2009, 24(11):2097-2108.
[47] Sun L, Zhang J, Kuang XY, et al. Generation of an induced pluripotent stem cell line (SHCDNRi001-A) from a patient with X-linked Alport syndrome carrying a heterozygous p.G409S (c. 1225 G>A) mutation in the COL4A5 gene[J]. Stem Cell Res, 2020, 45:101833.
[48] Lin X, Suh JH, Go G, et al. Feasibility of repairing glomerular basement membrane defects in Alport syndrome[J]. J Am Soc Nephrol, 2014, 25(4):687-692.
[49] Ninichuk V, Gross O, Segerer S, et al. Multipotent me-senchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen 4A3-deficient mice[J]. Kidney Int, 2006, 70(1):121-129.
[50] Cruz NM, Freedman BS. CRISPR gene editing in the kidney[J]. Am J Kidney Dis, 2018, 71(6):874-883.
[51] 孙蕾. 基因治疗在儿童遗传性肾脏病中的研究进展[J]. 国际儿科学杂志, 2020, 47(2):73-76.
[52] DeRosa F, Smith L, Shen Y, et al. Improved efficacy in a Fabry disease model using a systemic mRNA liver depot system as compared to enzyme replacement therapy[J]. Mol Ther, 2019, 27(4):878-889.
[53] 黄文彦, 孙蕾. 遗传性肾炎精准诊治面临的问题和思考[J]. 中华实用儿科临床杂志, 2020, 35(17):1299-1302.
文章导航

/