诊断学理论与实践 ›› 2021, Vol. 20 ›› Issue (02): 117-124.doi: 10.16150/j.1671-2870.2021.02.001
• 专家论坛 • 下一篇
收稿日期:
2020-03-31
出版日期:
2021-04-25
发布日期:
2022-06-28
通讯作者:
黄文彦
E-mail:hwy65@hotmail.com
基金资助:
Received:
2020-03-31
Online:
2021-04-25
Published:
2022-06-28
中图分类号:
匡新宇, 黄文彦. 儿童遗传性肾脏病的分类及诊治进展[J]. 诊断学理论与实践, 2021, 20(02): 117-124.
[1] |
Mehta L, Jim B. Hereditary renal diseases[J]. Semin Nephrol, 2017, 37(4):354-361.
doi: 10.1016/j.semnephrol.2017.05.007 URL |
[2] |
Emma F, Montini G, Parikh SM, et al. Mitochondrial dysfunction in inherited renal disease and acute kidney injury[J]. Nat Rev Nephrol, 2016, 12(5):267-280.
doi: 10.1038/nrneph.2015.214 URL |
[3] |
Connaughton DM, Kennedy C, Shril S, et al. Monogenic causes of chronic kidney disease in adults[J]. Kidney Int, 2019, 95(4):914-928.
doi: S0085-2538(18)30839-1 pmid: 30773290 |
[4] |
Murray SL, Fennelly NK, Doyle B, et al. Integration of genetic and histopathology data in interpretation of kidney disease[J]. Nephrol Dial Transplant, 2020, 35(7):1113-1132.
doi: 10.1093/ndt/gfaa176 URL |
[5] |
Leung JC. Inherited renal diseases[J]. Curr Pediatr Rev, 2014, 10(2):95-100.
doi: 10.2174/157339631002140513101755 URL |
[6] |
Devuyst O, Knoers NV, Remuzzi G, et al. Rare inherited kidney diseases: challenges, opportunities, and perspectives[J]. Lancet, 2014, 383(9931):1844-1859.
doi: 10.1016/S0140-6736(14)60659-0 URL |
[7] |
Edvardsson VO, Goldfarb DS, Lieske JC, et al. Hereditary causes of kidney stones and chronic kidney disease[J]. Pediatr Nephrol, 2013, 28(10):1923-1942.
doi: 10.1007/s00467-012-2329-z pmid: 23334384 |
[8] |
Bullich G, Domingo-Gallego A, Vargas I, et al. A kidney-disease gene panel allows a comprehensive genetic diagnosis of cystic and glomerular inherited kidney diseases[J]. Kidney Int, 2018, 94(2):363-371.
doi: S0085-2538(18)30241-2 pmid: 29801666 |
[9] |
van der Wijst J, Belge H, Bindels RJM, et al. Learning physiology from inherited kidney disorders[J]. Physiol Rev, 2019, 99(3):1575-1653.
doi: 10.1152/physrev.00008.2018 URL |
[10] |
Daga A, Majmundar AJ, Braun DA, et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis[J]. Kidney Int, 2018, 93(1):204-213.
doi: 10.1016/j.kint.2017.06.025 URL |
[11] |
Parenti G, Andria G, Ballabio A. Lysosomal storage di-seases: from pathophysiology to therapy[J]. Annu Rev Med, 2015, 66:471-486.
doi: 10.1146/annurev-med-122313-085916 URL |
[12] |
Hamosh A, Scott AF, Amberger J, et al. Online Mendelian Inheritance in Man (OMIM), a knowledge base of human genes and genetic disorders[J]. Nucleic Acids Res, 2002, 30(1):52-55.
pmid: 11752252 |
[13] |
Groopman EE, Gharavi AG. Expanding opportunities and emerging challenges: broadening the scope of genetic testing in nephrology[J]. Kidney Int, 2019, 95(4):743-746.
doi: S0085-2538(19)30126-7 pmid: 30904063 |
[14] | Narzisi G, Schatz MC. The challenge of small-scale repeats for indel discovery[J]. Front Bioeng Biotechnol, 2015, 3:8. |
[15] |
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010, 38(16):e164.
doi: 10.1093/nar/gkq603 URL |
[16] |
Priest JR. A primer to clinical genome sequencing[J]. Curr Opin Pediatr, 2017, 29(5):513-519.
doi: 10.1097/MOP.0000000000000532 pmid: 28786837 |
[17] |
Kono N, Arakawa K. Nanopore sequencing: review of potential applications in functional genomics[J]. Dev Growth Differ, 2019, 61(5):316-326.
doi: 10.1111/dgd.12608 URL |
[18] |
Joly D, Béroud C, Grünfeld JP. Rare inherited disorders with renal involvement-approach to the patient[J]. Kidney Int, 2015, 87(5):901-908.
doi: 10.1038/ki.2014.432 URL |
[19] |
Lemaire M, Parekh RS. A perspective on inherited kidney disease: lessons for practicing nephrologists[J]. Clin J Am Soc Nephrol, 2017, 12(12):1914-1916.
doi: 10.2215/CJN.11751017 URL |
[20] |
Trautmann A, Lipska-Zietkiewicz BS, Schaefer F. Explo-ring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: the PodoNet Registry[J]. Front Pediatr, 2018, 6:200.
doi: 10.3389/fped.2018.00200 pmid: 30065916 |
[21] |
Gianesello L, Del Prete D, Anglani F, et al. Genetics and phenotypic heterogeneity of Dent disease: the dark side of the moon[J]. Hum Genet, 2021, 140(3):401-421.
doi: 10.1007/s00439-020-02219-2 URL |
[22] |
Luo F, Tao YH. Nephronophthisis: a review of genotype-phenotype correlation[J]. Nephrology (Carlton), 2018, 23(10):904-911.
doi: 10.1111/nep.13393 URL |
[23] |
van Dam TJP, Kennedy J, van der Lee R, et al. Cilia Carta: an integrated and validated compendium of ciliary genes[J]. PLoS One, 2019, 14(5):e0216705.
doi: 10.1371/journal.pone.0216705 URL |
[24] |
McConnachie DJ, Stow JL, Mallett AJ. Ciliopathies and the kidney: a review[J]. Am J Kidney Dis, 2021, 77(3):410-419.
doi: 10.1053/j.ajkd.2020.08.012 pmid: 33039432 |
[25] |
Simms RJ, Eley L, Sayer JA. Nephronophthisis[J]. Eur J Hum Genet, 2009, 17(4):406-416.
doi: 10.1038/ejhg.2008.238 URL |
[26] |
Wolf MT. Nephronophthisis and related syndromes[J]. Curr Opin Pediatr, 2015, 27(2):201-211.
doi: 10.1097/MOP.0000000000000194 URL |
[27] |
Gimpel C, Bergmann C, Bockenhauer D, et al. International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people[J]. Nat Rev Nephrol, 2019, 15(11):713-726.
doi: 10.1038/s41581-019-0155-2 URL |
[28] |
Bergmann C, Guay-Woodford LM, Harris PC, et al. Polycystic kidney disease[J]. Nat Rev Dis Primers, 2018, 4(1):50.
doi: 10.1038/s41572-018-0047-y pmid: 30523303 |
[29] |
Groopman EE, Marasa M, Cameron-Christie S, et al. Diagnostic utility of exome sequencing for kidney disease[J]. N Engl J Med, 2019, 380(2):142-151.
doi: 10.1056/NEJMoa1806891 URL |
[30] |
Devuyst O, Olinger E, Weber S, et al. Autosomal dominant tubulointerstitial kidney disease[J]. Nat Rev Dis Primers, 2019: 5(1):60.
doi: 10.1038/s41572-019-0109-9 URL |
[31] |
Clissold RL, Hamilton AJ, Hattersley AT, et al. HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum[J]. Nat Rev Nephrol, 2015, 11(2):102-112.
doi: 10.1038/nrneph.2014.232 pmid: 25536396 |
[32] |
Bolar NA, Golzio C ivná M, et al. Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia[J]. Am J Hum Genet, 2016, 99(1):174-187.
doi: 10.1016/j.ajhg.2016.05.028 URL |
[33] |
Imafuku A, Nozu K, Sawa N, et al. How to resolve confusion in the clinical setting for the diagnosis of heterozygous COL4A3 or COL4A4 gene variants? Discussion and suggestions from nephrologists[J]. Clin Exp Nephrol, 2020, 24(8):651-656.
doi: 10.1007/s10157-020-01880-1 pmid: 32232700 |
[34] |
Barker DF, Hostikka SL, Zhou J, et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome[J]. Science, 1990, 248(4960):1224-1227.
pmid: 2349482 |
[35] |
Kuang X, Sun L, Wu Y, et al. A novel missense mutation of COL4A5 gene alter collagen Ⅳ α5 chain to cause X-linked Alport syndrome in a Chinese family[J]. Transl Pediatr, 2020, 9(5):587-595.
doi: 10.21037/tp-20-47 URL |
[36] |
Mochizuki T, Lemmink HH, Mariyama M, et al. Identification of mutations in the alpha 3(Ⅳ) and alpha 4(Ⅳ) collagen genes in autosomal recessive Alport syndrome[J]. Nat Genet, 1994, 8(1):77-81.
pmid: 7987396 |
[37] |
Lemmink HH, Nillesen WN, Mochizuki T, et al. Benign familial hematuria due to mutation of the type Ⅳ collagen alpha 4 gene[J]. J Clin Invest, 1996, 98(5):1114-1118.
pmid: 8787673 |
[38] |
Woroniecki RP, Kopp JB. Genetics of focal segmental glomerulosclerosis[J]. Pediatr Nephrol, 2007, 22(5):638-644.
pmid: 17347836 |
[39] |
Saleem MA. Molecular stratification of idiopathic nephro-tic syndrome[J]. Nat Rev Nephrol, 2019, 15(12):750-765.
doi: 10.1038/s41581-019-0217-5 pmid: 31654044 |
[40] |
Kitiyakara C, Eggers P, Kopp JB. Twenty-one-year trend in ESRD due to focal segmental glomerulosclerosis in the United States[J]. Am J Kidney Dis, 2004, 44(5):815-825.
pmid: 15492947 |
[41] |
Trautmann A, Bodria M, Ozaltin F, et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort[J]. Clin J Am Soc Nephrol, 2015, 10(4):592-600.
doi: 10.2215/CJN.06260614 URL |
[42] |
Sadowski CE, Lovric S, Ashraf S, et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome[J]. J Am Soc Nephrol, 2015, 26(6):1279-1289.
doi: 10.1681/ASN.2014050489 pmid: 25349199 |
[43] |
Park E, Lee C, Kim NKD, et al. Genetic study in Korean pediatric patients with steroid-resistant nephrotic syndrome or focal segmental glomerulosclerosis[J]. J Clin Med, 2020, 9(6):2013.
doi: 10.3390/jcm9062013 URL |
[44] |
van der Veen SJ, Hollak CEM, et al. Developments in the treatment of Fabry disease[J]. J Inherit Metab Dis, 2020, 43(5):908-921.
doi: 10.1002/jimd.12228 URL |
[45] |
Torra R, Furlano M. New therapeutic options for Alport syndrome[J]. Nephrol Dial Transplant, 2019, 34(8):1272-1279.
doi: 10.1093/ndt/gfz131 URL |
[46] |
Cochat P, Fargue S, Mestrallet G, et al. Disease recurrence in paediatric renal transplantation[J]. Pediatr Nephrol, 2009, 24(11):2097-2108.
doi: 10.1007/s00467-009-1137-6 URL |
[47] |
Sun L, Zhang J, Kuang XY, et al. Generation of an induced pluripotent stem cell line (SHCDNRi001-A) from a patient with X-linked Alport syndrome carrying a heterozygous p.G409S (c. 1225 G>A) mutation in the COL4A5 gene[J]. Stem Cell Res, 2020, 45:101833.
doi: 10.1016/j.scr.2020.101833 URL |
[48] |
Lin X, Suh JH, Go G, et al. Feasibility of repairing glomerular basement membrane defects in Alport syndrome[J]. J Am Soc Nephrol, 2014, 25(4):687-692.
doi: 10.1681/ASN.2013070798 URL |
[49] |
Ninichuk V, Gross O, Segerer S, et al. Multipotent me-senchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen 4A3-deficient mice[J]. Kidney Int, 2006, 70(1):121-129.
pmid: 16723981 |
[50] |
Cruz NM, Freedman BS. CRISPR gene editing in the kidney[J]. Am J Kidney Dis, 2018, 71(6):874-883.
doi: 10.1053/j.ajkd.2018.02.347 URL |
[51] | 孙蕾. 基因治疗在儿童遗传性肾脏病中的研究进展[J]. 国际儿科学杂志, 2020, 47(2):73-76. |
[52] |
DeRosa F, Smith L, Shen Y, et al. Improved efficacy in a Fabry disease model using a systemic mRNA liver depot system as compared to enzyme replacement therapy[J]. Mol Ther, 2019, 27(4):878-889.
doi: S1525-0016(19)30086-3 pmid: 30879951 |
[53] | 黄文彦, 孙蕾. 遗传性肾炎精准诊治面临的问题和思考[J]. 中华实用儿科临床杂志, 2020, 35(17):1299-1302. |
[1] | 沈小钰, 沙莎, 殷蕾, 周纬, 骆凝馨, 王雪峰. 儿童原发性肾病综合征动态血压变化特点的临床分析[J]. 诊断学理论与实践, 2022, 21(05): 613-618. |
[2] | 游碧君, 王金辉, 庄鸿源. 儿童输血反应发生率及输血反应原因分析和改进措施探讨[J]. 诊断学理论与实践, 2021, 20(04): 396-398. |
[3] | 董治亚, 戴彤彤. 肠道微生物群与儿童生长间相关性的研究进展及临床意义[J]. 诊断学理论与实践, 2021, 20(03): 234-238. |
[4] | 韦若蕖, 余红, 姚志荣. 儿童成纤维细胞结缔组织痣一例报道并文献复习[J]. 诊断学理论与实践, 2021, 20(02): 190-194. |
[5] | 李松涛, 杨大恒, 孙杭, 岳玉林, 张倩, 刘倩琦, 武苏, 马长艳. 甲状腺功能血清学指标结合超声检查在鉴别儿童毒性弥漫性甲状腺肿与慢性淋巴细胞性甲状腺炎中的价值[J]. 诊断学理论与实践, 2020, 19(06): 600-604. |
[6] | 孟磊俊, 张晶, 王雪莉, 李治, 张泓, 曾乃燕. 儿童伯基特淋巴瘤中差异表达基因的鉴定及临床应用[J]. 诊断学理论与实践, 2020, 19(03): 248-257. |
[7] | . 三维平衡稳态自由进动磁共振成像序列在儿童冠状动脉异常起源于肺动脉诊断中的应用价值[J]. 诊断学理论与实践, 2020, 19(02): 145-150. |
[8] | 王亚娟, 郭芊卉, 张冬燕, 程艾邦, 陈凌, 朱鼎良, 李燕. 上海莘庄社区儿童及青少年超重、肥胖的发生率及血压相关因素分析[J]. 诊断学理论与实践, 2019, 18(05): 575-580. |
[9] | 胡立伟, 孙爱敏, 王谦, 郭辰, 欧阳荣珍, 姚小芬, 钟玉敏. 心脏磁共振特征追踪成像技术在单心室术后心肌应变力评估中的应用研究[J]. 诊断学理论与实践, 2019, 18(05): 509-514. |
[10] | 张嵘, 顾燕英, 傅曼芬, 林琳. 嵌合型性染色体异常致男性发育障碍二例[J]. 诊断学理论与实践, 2019, 18(05): 581-582. |
[11] | 严华杰, 范德平, 邵洁. 儿童下呼吸道感染两种方法检测肺炎支原体IgM结果差异性分析[J]. 诊断学理论与实践, 2018, 17(05): 572-574. |
[12] | 樊卫民, 程美玉, 司晨晨, 张爱军. 5 067例不孕不育患者的染色体核型结果分析[J]. 诊断学理论与实践, 2017, 16(03): 282-286. |
[13] | 谢国艳, 高志生, 秦云, 李星军, 谭永强,. 上海崇明地区儿童急性下呼吸道感染的流行特点与临床特征分析[J]. 诊断学理论与实践, 2016, 15(04): 410-414. |
[14] | 卢水华,. 儿童结核病诊治的新认识[J]. 诊断学理论与实践, 2015, 14(05): 397-401. |
[15] | 刘淑平, 丁洁, 姚勇, 俞礼霞, 王芳,. 儿童Gitelman综合征一例并文献复习[J]. 诊断学理论与实践, 2014, 13(05): 524-528. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||