范秋灵 . 糖尿病肾病和非糖尿病慢性肾脏病患者应用钠-葡萄糖协同转运蛋白2抑制剂:预后评估及相关指南解读[J]. 诊断学理论与实践, 2021 , 20(02) : 130 -137 . DOI: 10.16150/j.1671-2870.2021.02.003
| [1] | Wheeler DC, James J, Patel D, et al. SGLT2 inhibitors: slowing of chronic kidney disease progression in type 2 diabetes[J]. Diabetes Ther, 2020, 11(12):2757-2774. |
| [2] | Zhang L, Zhao MH, Zuo L, et al. China Kidney Disease Network (CK-NET) 2016 Annual Data Report[J]. Kidney Int Suppl, 2020, 10(2):e97-e185. |
| [3] | Luk AOY, Hui EMT, Sin MC, et al. Declining trends of cardiovascular-renal complications and mortality in type 2 diabetes: the Hong Kong diabetes database[J]. Dia-betes Care, 2017, 40(7):928-935. |
| [4] | Ito M, Tanaka T. The anticipated renoprotective effects of sodium-glucose cotransporter 2 inhibitors[J]. Intern Med, 2018, 57(15):2105-2114. |
| [5] | Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy[J]. N Engl J Med, 2019, 380(24):2295-2306. |
| [6] | Mima A. Sodium-glucose cotransporter 2 inhibitors in patients with non-diabetic chronic kidney disease[J]. Adv Ther, 2021, 38(5):2201-2212. |
| [7] | Neal B, Perkovic V, Matthews DR, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med, 2017, 377(2):2099. |
| [8] | Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med, 2019, 380(4):347-357. |
| [9] | Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373(22):2117-2128. |
| [10] | Wanner C, Inzucchi SE, Zinman B, et al. Consistent effects of empagliflozin on cardiovascular and kidney outcomes irrespective of diabetic kidney disease categories: insights from the EMPA-REG OUTCOME trial[J]. Diabetes Obes Metab, 2020, 22(12):2335-2347. |
| [11] | Wanner C, Inzucchi SE, Zinman B, et al. Empagliflozin and progression of kidney disease in type 2 diabetes[J]. N Engl J Med, 2016, 375(4):323-334. |
| [12] | Cherney DZI, Heerspink HJL, Frederich R, et al. Effects of ertugliflozin on renal function over 104 weeks of treatment: a post hoc analysis of two randomised controlled trials[J]. Diabetologia, 2020, 63(6):1128-1140. |
| [13] | Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapagliflozin on development and progression of kidney di-sease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial[J]. Lancet Diabetes Endocrinol, 2019, 7(8):606-617. |
| [14] | Lo KB, Gul F, Ram P, et al. The effects of SGLT2 inhibitors on cardiovascular and renal outcomes in diabetic patients: a systematic review and meta-analysis[J]. Cardiorenal Med, 2020, 10(1):1-10. |
| [15] | Heerspink HJL, Karasik A, Thuresson M, et al. Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice(CVD-REAL 3): a multinational observational cohort study[J]. Lancet Diabetes Endocrinol, 2020, 8(1):27-35. |
| [16] | Pasternak B, Wintzell V, Melbye M, et al. Use of sodium-glucose co-transporter 2 inhibitors and risk of serious renal events: scandinavian cohort study[J]. BMJ, 2020, 369:m1186. |
| [17] | 付平. DAPA-CKD预设的IgA肾病和CKD4期亚组结果重磅发布[N]. 中国医学论坛报, 2021. |
| [18] | Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med, 2020, 383(15):1413-1424. |
| [19] | Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials[J]. Lancet, 2020, 396(10254):819-829. |
| [20] | Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus[J]. Circulation, 2014. 129(5):587-597. |
| [21] | Heerspink HJ, Perkins BA, Fitchett DH, et al. Sodium glucose cotransporter 2 inhibitors in the treatment of dia-betes mellitus: cardiovascular and kidney effects, po-tential mechanisms, and clinical applications[J]. Circulation, 2016, 134(10):752-772. |
| [22] | Lim BJ, Yang JW, Zou J, et al. Tubulointerstitial fibrosis can sensitize the kidney to subsequent glomerular injury[J]. Kidney Int, 2017, 92(6):1395-1403. |
| [23] | Carlström M, Wilcox CS, Arendshorst WJ. Renal autore-gulation in health and disease[J]. Physiol Rev, 2015, 95(2):405-511. |
| [24] | Rajasekeran H, Cherney DZ, Lovshin JA. Do effects of sodium-glucose cotransporter-2 inhibitors in patients with diabetes give insight into potential use in non-diabetic kidney disease?[J]. Curr Opin Nephrol Hypertens, 2017, 26(5):358-367. |
| [25] | Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD[J]. J Am Soc Nephrol, 2015, 26(2):258-269. |
| [26] | Nagata M, Kriz W. Glomerular damage after uninephrectomy in young rats Ⅱ. Mechanical stress on podocytes as a pathway to sclerosis[J]. Kidney Int, 1992, 42(1):148-160. |
| [27] | Endlich N, Endlich K. The challenge and response of podocytes to glomerular hypertension[J]. Semin Nephrol, 2012, 32(4):327-341. |
| [28] | Mima A, Abe H, Nagai K, et al. Activation of Src me-diates PDGF-induced Smad1 phosphorylation and contributes to the progression of glomerulosclerosis in glomerulonephritis[J]. PLoS One, 2011, 6(3):e17929. |
| [29] | Mima A, Hiraoka-Yamomoto J, Li Q, et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes[J]. Diabetes, 2012, 61(11):2967-2979. |
| [30] | Srivastava T, Celsi GE, Sharma M, et al. Fluid flow shear stress over podocytes is increased in the solitary kidney[J]. Nephrol Dial Transplant, 2014, 29(1):65-72. |
| [31] | Srivastava T, Thiagarajan G, Alon US, et al. Role of biomechanical forces in hyperfiltration-mediated glomerular injury in congenital anomalies of the kidney and urinary tract[J]. Nephrol Dial Transplant, 2017, 32(5):759-765. |
| [32] | Scholtes RA, van Raalte DH, Correa-Rotter R, et al. The effects of dapagliflozin on cardio-renal risk factors in patients with type 2 diabetes with or without renin-angiotensin system inhibitor treatment: a post hoc analysis[J]. Diabetes Obes Metab, 2020, 22(4):549-556. |
| [33] | Hansell P, Welch WJ, Blantz RC, et al. Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension[J]. Clin Exp Pharmacol Physiol, 2013, 40(2):123-137. |
| [34] | Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 300(5):R1009-R1022. |
| [35] | Gallo LA, Ward MS, Fotheringham AK, et al. Once daily administration of the SGLT2 inhibitor,empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice[J]. Sci Rep, 2016, 6:26428. |
| [36] | Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME Trial: a “Thrifty Substrate” hypothesis[J]. Diabetes Care, 2016, 39(7):1108-1114. |
| [37] | Rajeev SP, Cuthbertson DJ, Wilding JP. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition[J]. Diabetes Obes Metab, 2016, 18(2):125-134. |
| [38] | Gambhir D, Ananth S, Veeranan-Karmegam R, et al. GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2012, 53(4): 2208-2217. |
| [39] | Brotman DJ, Bash LD, Qayyum R, et al. Heart rate varia-bility predicts ESRD and CKD-related hospitalization[J]. J Am Soc Nephrol, 2010, 21(9):1560-1570. |
| [40] | Kobayashi S, Ikeda T, Moriya H, et al. Asymptomatic cerebral lacunae in patients with chronic kidney disease[J]. Am J Kidney Dis, 2004, 44(1):35-41. |
| [41] | Morgan DA, Anderson EA, Mark AL. Renal sympathetic nerve activity is increased in obese Zucker rats[J]. Hyper-tension, 1995, 25(4 Pt 2):834-838. |
| [42] | Pestell RG, Kirsner RL, Best JD. Validation and evaluation of test for sympathetic cholinergic function in diabetes mellitus[J]. Diabetes, 1991, 40(7):867-872. |
| [43] | Ohtomo Y, Meister B, Hökfelt T, et al. Coexisting NPY and NE synergistically regulate renal tubular Na+, K+-ATPase activity[J]. Kidney Int, 1994, 45(6):1606-1613. |
| [44] | Herat LY, Magno AL, Rudnicka C, et al. SGLT2 inhibitor-induced sympathoinhibition: a novel mechanism for cardiorenal protection[J]. JACC Basic Transl Sci, 2020, 5(2):169-179. |
| [45] | Mima A, Ohshiro Y, Kitada M, et al. Glomerular-specific protein kinase C-β-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity[J]. Kidney Int, 2011, 79(8):883-896. |
| [46] | Mima A, Yasuzawa T, Nakamura T, et al. Linagliptin affects IRS1/Akt signaling and prevents high glucose-induced apoptosis in podocytes[J]. Sci Rep, 2020, 10(1):5775. |
| [47] | Kiuchi S, Hisatake S, Kabuki T, et al. Long-term use of ipragliflozin improved cardiac sympathetic nerve activity in a patient with heart failure: a case report[J]. Drug Discov Ther, 2018, 12(1):51-54. |
| [48] | Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373(22):2117-2128. |
| [49] | Kohan DE, Fioretto P, Tang W, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control[J]. Kidney Int, 2013, 85(4):962-971. |
| [50] | Petrykiv S, Sjöström CD, Greasley PJ, et al. Differential effects of dapagliflozin on cardiovascular risk factors at varying degrees of renal function[J]. Clin J Am Soc Nephrol, 2017, 12(5):751-759. |
/
| 〈 |
|
〉 |