诊断学理论与实践 ›› 2021, Vol. 20 ›› Issue (02): 130-137.doi: 10.16150/j.1671-2870.2021.02.003
范秋灵
收稿日期:
2021-04-10
出版日期:
2021-04-25
发布日期:
2022-06-28
Received:
2021-04-10
Online:
2021-04-25
Published:
2022-06-28
中图分类号:
范秋灵. 糖尿病肾病和非糖尿病慢性肾脏病患者应用钠-葡萄糖协同转运蛋白2抑制剂:预后评估及相关指南解读[J]. 诊断学理论与实践, 2021, 20(02): 130-137.
[1] |
Wheeler DC, James J, Patel D, et al. SGLT2 inhibitors: slowing of chronic kidney disease progression in type 2 diabetes[J]. Diabetes Ther, 2020, 11(12):2757-2774.
doi: 10.1007/s13300-020-00930-x URL |
[2] | Zhang L, Zhao MH, Zuo L, et al. China Kidney Disease Network (CK-NET) 2016 Annual Data Report[J]. Kidney Int Suppl, 2020, 10(2):e97-e185. |
[3] | Luk AOY, Hui EMT, Sin MC, et al. Declining trends of cardiovascular-renal complications and mortality in type 2 diabetes: the Hong Kong diabetes database[J]. Dia-betes Care, 2017, 40(7):928-935. |
[4] |
Ito M, Tanaka T. The anticipated renoprotective effects of sodium-glucose cotransporter 2 inhibitors[J]. Intern Med, 2018, 57(15):2105-2114.
doi: 10.2169/internalmedicine.9842-17 URL |
[5] |
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy[J]. N Engl J Med, 2019, 380(24):2295-2306.
doi: 10.1056/NEJMoa1811744 URL |
[6] |
Mima A. Sodium-glucose cotransporter 2 inhibitors in patients with non-diabetic chronic kidney disease[J]. Adv Ther, 2021, 38(5):2201-2212.
doi: 10.1007/s12325-021-01735-5 URL |
[7] | Neal B, Perkovic V, Matthews DR, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med, 2017, 377(2):2099. |
[8] |
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med, 2019, 380(4):347-357.
doi: 10.1056/NEJMoa1812389 URL |
[9] |
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373(22):2117-2128.
doi: 10.1056/NEJMoa1504720 URL |
[10] |
Wanner C, Inzucchi SE, Zinman B, et al. Consistent effects of empagliflozin on cardiovascular and kidney outcomes irrespective of diabetic kidney disease categories: insights from the EMPA-REG OUTCOME trial[J]. Diabetes Obes Metab, 2020, 22(12):2335-2347.
doi: 10.1111/dom.14158 URL |
[11] |
Wanner C, Inzucchi SE, Zinman B, et al. Empagliflozin and progression of kidney disease in type 2 diabetes[J]. N Engl J Med, 2016, 375(4):323-334.
doi: 10.1056/NEJMoa1515920 URL |
[12] |
Cherney DZI, Heerspink HJL, Frederich R, et al. Effects of ertugliflozin on renal function over 104 weeks of treatment: a post hoc analysis of two randomised controlled trials[J]. Diabetologia, 2020, 63(6):1128-1140.
doi: 10.1007/s00125-020-05133-4 pmid: 32236732 |
[13] |
Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapagliflozin on development and progression of kidney di-sease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial[J]. Lancet Diabetes Endocrinol, 2019, 7(8):606-617.
doi: 10.1016/S2213-8587(19)30180-9 URL |
[14] |
Lo KB, Gul F, Ram P, et al. The effects of SGLT2 inhibitors on cardiovascular and renal outcomes in diabetic patients: a systematic review and meta-analysis[J]. Cardiorenal Med, 2020, 10(1):1-10.
doi: 10.1159/000503919 URL |
[15] |
Heerspink HJL, Karasik A, Thuresson M, et al. Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice(CVD-REAL 3): a multinational observational cohort study[J]. Lancet Diabetes Endocrinol, 2020, 8(1):27-35.
doi: 10.1016/S2213-8587(19)30384-5 URL |
[16] | Pasternak B, Wintzell V, Melbye M, et al. Use of sodium-glucose co-transporter 2 inhibitors and risk of serious renal events: scandinavian cohort study[J]. BMJ, 2020, 369:m1186. |
[17] | 付平. DAPA-CKD预设的IgA肾病和CKD4期亚组结果重磅发布[N]. 中国医学论坛报, 2021. |
[18] |
Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med, 2020, 383(15):1413-1424.
doi: 10.1056/NEJMoa2022190 URL |
[19] |
Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials[J]. Lancet, 2020, 396(10254):819-829.
doi: S0140-6736(20)31824-9 pmid: 32877652 |
[20] |
Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus[J]. Circulation, 2014. 129(5):587-597.
doi: 10.1161/CIRCULATIONAHA.113.005081 pmid: 24334175 |
[21] |
Heerspink HJ, Perkins BA, Fitchett DH, et al. Sodium glucose cotransporter 2 inhibitors in the treatment of dia-betes mellitus: cardiovascular and kidney effects, po-tential mechanisms, and clinical applications[J]. Circulation, 2016, 134(10):752-772.
doi: 10.1161/CIRCULATIONAHA.116.021887 pmid: 27470878 |
[22] |
Lim BJ, Yang JW, Zou J, et al. Tubulointerstitial fibrosis can sensitize the kidney to subsequent glomerular injury[J]. Kidney Int, 2017, 92(6):1395-1403.
doi: 10.1016/j.kint.2017.04.010 URL |
[23] |
Carlström M, Wilcox CS, Arendshorst WJ. Renal autore-gulation in health and disease[J]. Physiol Rev, 2015, 95(2):405-511.
doi: 10.1152/physrev.00042.2012 pmid: 25834230 |
[24] |
Rajasekeran H, Cherney DZ, Lovshin JA. Do effects of sodium-glucose cotransporter-2 inhibitors in patients with diabetes give insight into potential use in non-diabetic kidney disease?[J]. Curr Opin Nephrol Hypertens, 2017, 26(5):358-367.
doi: 10.1097/MNH.0000000000000343 URL |
[25] |
Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD[J]. J Am Soc Nephrol, 2015, 26(2):258-269.
doi: 10.1681/ASN.2014030278 URL |
[26] |
Nagata M, Kriz W. Glomerular damage after uninephrectomy in young rats Ⅱ. Mechanical stress on podocytes as a pathway to sclerosis[J]. Kidney Int, 1992, 42(1):148-160.
pmid: 1635344 |
[27] |
Endlich N, Endlich K. The challenge and response of podocytes to glomerular hypertension[J]. Semin Nephrol, 2012, 32(4):327-341.
doi: 10.1016/j.semnephrol.2012.06.004 pmid: 22958487 |
[28] |
Mima A, Abe H, Nagai K, et al. Activation of Src me-diates PDGF-induced Smad1 phosphorylation and contributes to the progression of glomerulosclerosis in glomerulonephritis[J]. PLoS One, 2011, 6(3):e17929.
doi: 10.1371/journal.pone.0017929 URL |
[29] |
Mima A, Hiraoka-Yamomoto J, Li Q, et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes[J]. Diabetes, 2012, 61(11):2967-2979.
doi: 10.2337/db11-1824 URL |
[30] |
Srivastava T, Celsi GE, Sharma M, et al. Fluid flow shear stress over podocytes is increased in the solitary kidney[J]. Nephrol Dial Transplant, 2014, 29(1):65-72.
doi: 10.1093/ndt/gft387 URL |
[31] |
Srivastava T, Thiagarajan G, Alon US, et al. Role of biomechanical forces in hyperfiltration-mediated glomerular injury in congenital anomalies of the kidney and urinary tract[J]. Nephrol Dial Transplant, 2017, 32(5):759-765.
doi: 10.1093/ndt/gfw430 URL |
[32] |
Scholtes RA, van Raalte DH, Correa-Rotter R, et al. The effects of dapagliflozin on cardio-renal risk factors in patients with type 2 diabetes with or without renin-angiotensin system inhibitor treatment: a post hoc analysis[J]. Diabetes Obes Metab, 2020, 22(4):549-556.
doi: 10.1111/dom.13923 pmid: 31742881 |
[33] | Hansell P, Welch WJ, Blantz RC, et al. Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension[J]. Clin Exp Pharmacol Physiol, 2013, 40(2):123-137. |
[34] |
Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 300(5):R1009-R1022.
doi: 10.1152/ajpregu.00809.2010 URL |
[35] |
Gallo LA, Ward MS, Fotheringham AK, et al. Once daily administration of the SGLT2 inhibitor,empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice[J]. Sci Rep, 2016, 6:26428.
doi: 10.1038/srep26428 URL |
[36] |
Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME Trial: a “Thrifty Substrate” hypothesis[J]. Diabetes Care, 2016, 39(7):1108-1114.
doi: 10.2337/dc16-0330 pmid: 27289126 |
[37] |
Rajeev SP, Cuthbertson DJ, Wilding JP. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition[J]. Diabetes Obes Metab, 2016, 18(2):125-134.
doi: 10.1111/dom.12578 pmid: 26403227 |
[38] |
Gambhir D, Ananth S, Veeranan-Karmegam R, et al. GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2012, 53(4): 2208-2217.
doi: 10.1167/iovs.11-8447 URL |
[39] |
Brotman DJ, Bash LD, Qayyum R, et al. Heart rate varia-bility predicts ESRD and CKD-related hospitalization[J]. J Am Soc Nephrol, 2010, 21(9):1560-1570.
doi: 10.1681/ASN.2009111112 pmid: 20616169 |
[40] |
Kobayashi S, Ikeda T, Moriya H, et al. Asymptomatic cerebral lacunae in patients with chronic kidney disease[J]. Am J Kidney Dis, 2004, 44(1):35-41.
pmid: 15211435 |
[41] | Morgan DA, Anderson EA, Mark AL. Renal sympathetic nerve activity is increased in obese Zucker rats[J]. Hyper-tension, 1995, 25(4 Pt 2):834-838. |
[42] |
Pestell RG, Kirsner RL, Best JD. Validation and evaluation of test for sympathetic cholinergic function in diabetes mellitus[J]. Diabetes, 1991, 40(7):867-872.
pmid: 2060722 |
[43] |
Ohtomo Y, Meister B, Hökfelt T, et al. Coexisting NPY and NE synergistically regulate renal tubular Na+, K+-ATPase activity[J]. Kidney Int, 1994, 45(6):1606-1613.
pmid: 7523751 |
[44] | Herat LY, Magno AL, Rudnicka C, et al. SGLT2 inhibitor-induced sympathoinhibition: a novel mechanism for cardiorenal protection[J]. JACC Basic Transl Sci, 2020, 5(2):169-179. |
[45] |
Mima A, Ohshiro Y, Kitada M, et al. Glomerular-specific protein kinase C-β-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity[J]. Kidney Int, 2011, 79(8):883-896.
doi: 10.1038/ki.2010.526 URL |
[46] |
Mima A, Yasuzawa T, Nakamura T, et al. Linagliptin affects IRS1/Akt signaling and prevents high glucose-induced apoptosis in podocytes[J]. Sci Rep, 2020, 10(1):5775.
doi: 10.1038/s41598-020-62579-7 URL |
[47] |
Kiuchi S, Hisatake S, Kabuki T, et al. Long-term use of ipragliflozin improved cardiac sympathetic nerve activity in a patient with heart failure: a case report[J]. Drug Discov Ther, 2018, 12(1):51-54.
doi: 10.5582/ddt.2017.01069 URL |
[48] |
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373(22):2117-2128.
doi: 10.1056/NEJMoa1504720 URL |
[49] |
Kohan DE, Fioretto P, Tang W, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control[J]. Kidney Int, 2013, 85(4):962-971.
doi: 10.1038/ki.2013.356 URL |
[50] |
Petrykiv S, Sjöström CD, Greasley PJ, et al. Differential effects of dapagliflozin on cardiovascular risk factors at varying degrees of renal function[J]. Clin J Am Soc Nephrol, 2017, 12(5):751-759.
doi: 10.2215/CJN.10180916 URL |
[1] | 中华医学会内分泌学分会. 新型冠状病毒肺炎疫情下糖尿病管理专家建议[J]. 诊断学理论与实践, 2022, 21(02): 136-138. |
[2] | 陈煦阳, 顾卫琼. 胰岛素自身抗体临床检测应用局限及对策研究进展[J]. 诊断学理论与实践, 2022, 21(01): 95-98. |
[3] | 王广宇, 杨昕, 张立娟, 谭姣容. 住院新诊断2型糖尿病男性患者血浆总睾酮水平与骨钙素的相关性研究[J]. 诊断学理论与实践, 2021, 20(06): 573-578. |
[4] | 章淼滢, 罗飞宏. 儿童单基因糖尿病诊治进展及诊断策略[J]. 诊断学理论与实践, 2021, 20(03): 229-232. |
[5] | 杨聚荣, 林利容. 慢性肾脏病患者妊娠的管理现状及策略[J]. 诊断学理论与实践, 2021, 20(02): 125-129. |
[6] | 余舒文, 方正滢, 谢静远. 基因检测在慢性肾脏病诊治中的应用及进展[J]. 诊断学理论与实践, 2020, 19(06): 613-617. |
[7] | 赵红燕, 刘建民. 2019年《糖尿病患者骨折风险管理中国专家共识》解读[J]. 诊断学理论与实践, 2020, 19(03): 225-228. |
[8] | 李贵森. 2019年《中国慢性肾脏病矿物质和骨异常诊治指南》解读[J]. 诊断学理论与实践, 2020, 19(03): 229-231. |
[9] | 邓琳, 丁怡, 汪萍, 卞炳贤, 沈立松. 尿中性粒细胞明胶酶相关脂质运载蛋白/肌酐比值在2型糖尿病肾损伤的早期诊断及病情评估中的临床应用[J]. 诊断学理论与实践, 2019, 18(1): 61-65. |
[10] | 姚小艳, 陈君. 上海地区孕妇维生素D水平调查及其与妊娠期糖尿病发生的相关性研究及其预测价值探索[J]. 诊断学理论与实践, 2019, 18(06): 634-639. |
[11] | 顾勤, 王泰蓉, 陈荔萍, 吴舒窈, 沈祎. 社区老年女性糖尿病患者尿路感染常见病原菌调查[J]. 诊断学理论与实践, 2019, 18(05): 538-542. |
[12] | 刘珊珊, 牛静雅, 王天歌, 李勉, 赵志云, 徐瑜, 陆洁莉, 徐敏, 毕宇芳, 张迪. 上海淞南社区2型糖尿病患者合并其他心血管代谢异常的现况流行病学调查[J]. 诊断学理论与实践, 2019, 18(03): 323-328. |
[13] | 王媛媛, 范秋灵. 血清降钙素原在慢性肾脏病合并细菌感染患者中的临床价值[J]. 诊断学理论与实践, 2019, 18(03): 353-359. |
[14] | 张祎昀, 徐雷, 唐兆生, 陈英华, 窦琴, 冯波. 2型糖尿病合并戊型肝炎患者的临床特征分析[J]. 诊断学理论与实践, 2018, 17(05): 557-561. |
[15] | 周鑫昀, 沈立松, 潘秀军. 新型自身抗体及相关抗原在1型糖尿病诊治中的研究进展[J]. 诊断学理论与实践, 2018, 17(03): 352-356. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||