国内外学术动态

奥尔波特综合征的疾病谱扩展对相关疾病诊断、筛查和治疗的启示

展开
  • 上海交通大学医学院附属新华医院肾脏风湿免疫科 上海市罕见病诊治中心,上海 200092

收稿日期: 2021-05-17

  网络出版日期: 2022-06-28

基金资助

国家自然科学基金项目(82070697);上海市卫生健康委员会科研基金项目(201940255);上海申康医院发展中心临床研究培育项目(SHDC12018X07);上海交通大学医学院青年科创工作室项目

本文引用格式

林芙君, 蒋更如 . 奥尔波特综合征的疾病谱扩展对相关疾病诊断、筛查和治疗的启示[J]. 诊断学理论与实践, 2021 , 20(03) : 245 -250 . DOI: 10.16150/j.1671-2870.2021.03.004

参考文献

[1] Alport AC. Hereditary familial congenital haemorrhagic nephritis[J]. Br Med J, 1927, 1(3454):504-506.
[2] Flinter F. Alport's syndrome[J]. J Med Genet, 1997, 34(4):326-330.
[3] Gregory MC, Terreros DA, Barker DF, et al. Alport syndrome--clinical phenotypes, incidence, and pathology[J]. Contrib Nephrol, 1996, 117:1-28.
[4] Savige J, Gregory M, Gross O, et al. Expert guidelines for the management of Alport syndrome and thin basement membrane nephropathy[J]. J Am Soc Nephrol, 2013, 24(3):364-375.
[5] ALPORT综合征诊疗共识专家组. Alport综合征诊断和治疗专家推荐意见[J]. 中华肾脏病杂志, 2018, 34(3):227-231.
[6] Wang YY, Savige J. The epidemiology of thin basement membrane nephropathy[J]. Semin Nephrol, 2005, 25(3):136-139.
[7] Matthaiou A, Poulli T, Deltas C. Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by COL4A3 or COL4A4 mutations: a systematic review[J]. Clin Kidney J, 2020, 13(6):1025-1036.
[8] Demir E, Caliskan Y. Variations of type Ⅳ collagen-encoding genes in patients with histological diagnosis of focal segmental glomerulosclerosis[J]. Pediatr Nephrol, 2020, 35(6):927-936.
[9] Li Y, Groopman EE, D'Agati V, et al. Type Ⅳ collagen mutations in familial IgA nephropathy[J]. Kidney Int Rep, 2020, 5(7):1075-1078.
[10] Barua M, Paterson AD. Population-based studies reveal an additive role of type Ⅳ collagen variants in hematuria and albuminuria[J/OL]. Pediatr Nephrol, 2021-02-26[2021-05-17]. https://pubmed.ncbi.nlm.nih.gov/33635378/.
[11] Furlano M, Martínez V, Pybus M, et al. Clinical and genetic features of autosomal dominant Alport syndrome: a cohort study[J/OL]. Am J Kidney Dis, 2021-04-07[2021-05-17]. https://pubmed.ncbi.nlm.nih.gov/33838161/.
[12] Kashtan CE, Ding J, Garosi G, et al. Alport syndrome: a unified classification of genetic disorders of collagen Ⅳ α345: a position paper of the Alport Syndrome Classification Working Group[J]. Kidney Int, 2018, 93(5):1045-1051.
[13] Groopman EE, Marasa M, Cameron-Christie S, et al. Diag-nostic utility of exome sequencing for kidney disease[J]. N Engl J Med, 2019, 380(2):142-151.
[14] Quinlan C, Rheault MN. Genetic basis of type Ⅳ collagen disorders of the kidney[J/OL]. Clin J Am Soc Nephrol. 2021-04-13[2021-05-17]. https://pubmed.ncbi.nlm.nih.gov/33849932/.
[15] Gross O, Licht C, Anders HJ, et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy[J]. Kidney Int, 2012, 81(5):494-501.
[16] Zhang Y, Böckhaus J, Wang F, et al. Genotype-phenotype correlations and nephroprotective effects of RAAS inhibition in patients with autosomal recessive Alport syndrome[J/OL]. Pediatr Nephrol. 2021-03-27[2021-05-17]. https://pubmed.ncbi.nlm.nih.gov/33772369/.
[17] Gross O, Tönshoff B, Weber LT, et al. A multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open-arm comparison indicates safety and efficacy of nephroprotective therapy with ramipril in children with Alport′s syndrome[J]. Kidney Int, 2020, 97(6):1275-1286.
[18] Stock J, Kuenanz J, Glonke N, et al. Prospective study on the potential of RAAS blockade to halt renal disease in Alport syndrome patients with heterozygous mutations[J]. Pediatr Nephrol, 2017, 32(1):131-137.
[19] Temme J, Peters F, Lange K, et al. Incidence of renal failure and nephroprotection by RAAS inhibition in hete-rozygous carriers of X-chromosomal and autosomal recessive Alport mutations[J]. Kidney Int, 2012, 81(8):779-783.
[20] Kashtan CE. Alport syndrome: achieving early diagnosis and treatment[J]. Am J Kidney Dis, 2021, 77(2):272-279.
[21] Kashtan CE, Gross O. Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults-an update for 2020[J]. Pediatr Nephrol, 2021, 36(3):711-719.
[22] Savige J. Should we diagnose autosomal dominant alport syndrome when there is a pathogenic heterozygous COL4A3 or COL4A4 variant?[J]. Kidney Int Rep, 2018, 3(6):1239-1241.
[23] Chan MM, Gale DP. Isolated microscopic haematuria of glomerular origin: clinical significance and diagnosis in the 21st century[J]. Clin Med (Lond), 2015, 15(6):576-580.
[24] Uliana V, Sebastio P, Riva M, et al. Deciphering the pathogenesis of the COL4-related hematuric nephritis: A genotype/phenotype study[J]. Mol Genet Genomic Med, 2021, 9(2):e1576.
[25] Moreno JA, Yuste C, Gutiérrez E, et al. Haematuria as a risk factor for chronic kidney disease progression in glomerular diseases: a review[J]. Pediatr Nephrol, 2016, 31(4):523-533.
[26] Murray SL, Dorman A, Benson KA, et al. Utility of genomic testing after renal biopsy[J]. Am J Nephrol, 2020, 51(1):43-53.
[27] Jayasinghe K, Stark Z, Kerr PG, et al. Clinical impact of genomic testing in patients with suspected monogenic kidney disease[J]. Genet Med, 2021, 23(1):183-191.
[28] Vos P, Zietse R, van Geel M, et al. Diagnosing Alport syndrome: lessons from the pediatric ward[J]. Nephron, 2018, 140(3):203-210.
[29] Deltas C, Pierides A, Voskarides K. Molecular genetics of familial hematuric diseases[J]. Nephrol Dial Transplant, 2013, 28(12):2946-2960.
[30] Savige J, Ariani F, Mari F, et al. Expert consensus guidelines for the genetic diagnosis of Alport syndrome[J]. Pediatr Nephrol, 2019, 34(7):1175-1189.
[31] Savige J, Storey H, Watson E, et al. Consensus statement on standards and guidelines for the molecular diagnostics of Alport syndrome: refining the ACMG criteria[J/OL]. Eur J Hum Genet, 2021-04-15[2021-05-17]. https://pubmed.ncbi.nlm.nih.gov/33854215/.
[32] Yamamura T, Nozu K, Minamikawa S, et al. Comparison between conventional and comprehensive sequencing approaches for genetic diagnosis of Alport syndrome[J]. Mol Genet Genomic Med, 2019, 7(9):e883.
[33] Moreno JA, Sevillano á, Gutiérrez E, et al. Glomerular hematuria: cause or consequence of renal inflammation?[J]. Int J Mol Sci, 2019, 20(9):2205.
[34] Bish DR, Bish EK, El-Hajj H, et al. A robust pooled testing approach to expand COVID-19 screening capacity[J]. PLoS One, 2021, 16(2):e0246285.
[35] Lin F, Bian F, Zou J, et al. Whole exome sequencing reveals novel COL4A3 and COL4A4 mutations and resolves diagnosis in Chinese families with kidney disease[J]. BMC Nephrol, 2014, 15:175.
[36] Zhang Y, Ding J, Wang S, et al. Reassessing the pathogenicity of c.2858G>T(p.(G953V)) in COL4A5 Gene: report of 19 Chinese families[J]. Eur J Hum Genet, 2020, 28(2):244-252.
[37] Shulman C, Liang E, Kamura M, et al. Type Ⅳ collagen variants in CKD: performance of computational predictions for identifying pathogenic variants[J]. Kidney Med, 2021, 3(2):257-266.
[38] Omachi K, Kamura M, Teramoto K, et al. A split-luciferase-based trimer formation assay as a high-throughput screening platform for therapeutics in alport syndrome[J]. Cell Chem Biol, 2018, 25(5):634-643.
[39] Fallerini C, Baldassarri M, Trevisson E, et al. Alport syndrome: impact of digenic inheritance in patients management[J]. Clin Genet, 2017, 92(1):34-44.
[40] Horinouchi T, Nozu K, Yamamura T, et al. Detection of splicing abnormalities and genotype-phenotype correlation in X-linked Alport syndrome[J]. J Am Soc Nephrol, 2018, 29(8):2244-2254.
[41] Boeckhaus J, Hoefele J, Riedhammer KM, et al. Precise variant interpretation, phenotype ascertainment, and genotype-phenotype correlation of children in the EARLY PRO-TECT Alport trial[J]. Clin Genet, 2021, 99(1):143-156.
[42] Horinouchi T, Yamamura T, Nagano C, et al. Heterozygous urinary abnormality-causing variants of COL4A3 and COL4A4 affect severity of autosomal recessive Alport syndrome[J]. Kidney 360, 2020, 1:936-942.
[43] Yamamura T, Nozu K, Fu XJ, et al. Natural history and genotype-phenotype correlation in female X-linked Alport syndrome[J]. Kidney Int Rep, 2017, 2(5):850-855.
文章导航

/