苏长青 . 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021 , 20(05) : 427 -433 . DOI: 10.16150/j.1671-2870.2021.05.001
[1] | Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021,71(3):209-249. |
[2] | Man XB, Tang L, Zhang BH, et al. Upregulation of Glypi-can-3 expression in hepatocellular carcinoma but downregulation in cholangiocarcinoma indicates its differential diagnosis value in primary liver cancers[J]. Liver Int, 2005,25(5):962-966. |
[3] | Shen Q, Fan J, Yang XR, et al. Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma: a large-scale, multicentre study[J]. Lancet Oncol, 2012,13(8):817-826. |
[4] | Zhou J, Yu L, Gao X, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma[J]. J Clin Oncol, 2011,29(36):4781-4788. |
[5] | Wang HL, Anatelli F, Zhai QJ, et al. Glypican-3 as a useful diagnostic marker that distinguishes hepatocellular carcinoma from benign hepatocellular mass lesions[J]. Arch Pathol Lab Med, 2008,132(11):1723-1728. |
[6] | Zhu ZW, Friess H, Wang L, et al. Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders[J]. Gut, 2001, 48(4):558-564. |
[7] | Fu J, Wang H. Precision diagnosis and treatment of liver cancer in China[J]. Cancer Lett, 2018,412:283-288. |
[8] | Qin QF, Weng J, Xu GX, et al. Combination of serum tumor markers dickkopf-1, DCP and AFP for the diagnosis of primary hepatocellular carcinoma[J]. Asian Pac J Trop Med, 2017,10(4):409-413. |
[9] | Ringelhan M, Pfister D, O′Connor T, et al. The immuno-logy of hepatocellular carcinoma[J]. Nat Immunol, 2018, 19(3):222-232. |
[10] | Zheng C, Zheng L, Yoo JK, et al. Landscape of infiltrati-ng T cells in liver cancer revealed by single-cell sequencing[J]. Cell, 2017,169(7):1342-1356. |
[11] | Chikuma S, Kanamori M, Mise-Omata S, et al. Suppressors of cytokine signaling: potential immune checkpoint molecules for cancer immunotherapy[J]. Cancer Sci, 2017, 108(4):574-580. |
[12] | Gao Q, Qiu SJ, Fan J, et al. Intratumoral balance of re-gulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection[J]. J Clin Oncol, 2007,25(18):2586-2593. |
[13] | Devalaraja S, To TKJ, Folkert IW, et al. Tumor-derived retinoic acid regulates intratumoral monocyte differentiation to promote immune suppression[J]. Cell, 2020,180(6):1098-1114,e16. |
[14] | Pauken KE, Torchia JA, Chaudhri A, et al. Emerging concepts in PD-1 checkpoint biology[J]. Semin Immunol, 2021,52:101480. |
[15] | Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade[J]. Science, 1996, 271(5256):1734-1736. |
[16] | Fan F, Chen K, Lu X, et al. Dual targeting of PD-L1 and PD-L2 by PCED1B-AS1 via sponging hsa-miR-194-5p induces immunosuppression in hepatocellular carcinoma[J]. Hepatol Int, 2021,15(2):444-458. |
[17] | Ma LJ, Feng FL, Dong LQ, et al. Clinical significance of PD-1/PD-Ls gene amplification and overexpression in patients with hepatocellular carcinoma[J]. Theranostics, 2018,8(20):5690-5702. |
[18] | Lee DH, Lee MW, Kim PN, et al. Outcome of no-touch radiofrequency ablation for small hepatocellular carcinoma: a multicenter clinical trial[J]. Radiology, 2021,301(1):229-236. |
[19] | Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. N Engl J Med, 2008, 359(4):378-390. |
[20] | Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase Ⅲ randomised, double-blind, placebo-controlled trial[J]. Lancet Oncol, 2009,10(1):25-34. |
[21] | Marrero JA, Kudo M, Venook AP, et al. Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: The GIDEON study[J]. J Hepatol, 2016, 65(6):1140-1147. |
[22] | Qin S, Bi F, Gu S, et al. Donafenib versus Sorafenib in first-line treatment of unresectable or metastatic hepatocellular carcinoma: a randomized, open-label, parallel-controlled phase Ⅱ-Ⅲ trial[J]. J Clin Oncol, 2021,39(27):3002-3011. |
[23] | Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2017, 389(10064):56-66. |
[24] | Qin S, Li Q, Gu S, et al. Apatinib as second-line or later therapy in patients with advanced hepatocellular carcinoma (AHELP): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial[J]. Lancet Gastroenterol Hepatol, 2021,6(7):559-568. |
[25] | Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012,366(26):2443-2454. |
[26] | El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017,389(10088):2492-2502. |
[27] | Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 tria[J]. Lancet Oncol, 2018, 19(7):940-952. |
[28] | Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase Ⅲ Trial[J]. J Clin Oncol, 2020,38(3):193-202. |
[29] | Liu Y, Chen X, Han W, et al. Tisagenlecleucel, an approved anti-CD19 chimeric antigen receptor T-cell therapy for the treatment of leukemia[J]. Drugs Today (Barc), 2017,53(11):597-608. |
[30] | Liu Y, Chen X, Han W, et al. A guide to manufacturing CAR T cell therapies[J]. Drugs Today (Barc), 2017,53(11):597-608. |
[31] | Gao H, Li K, Tu H, et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma[J]. Clin Cancer Res, 2014,20(24):6418-6428. |
[32] | Dargel C, Bassani-Sternberg M, Hasreiter J, et al. T cells engineered to express a T-cell receptor specific for Glypi-can-3 to recognize and kill hepatoma cells in vitro and in mice[J]. Gastroenterology, 2015,149(4):1042-1052. |
[33] | Li W, Guo L, Rathi P, et al. Redirecting T cells to Glypi-can-3 with 4-1BB Zeta chimeric antigen receptors results in Th1 polarization and potent antitumor activity[J]. Hum Gene Ther. 2017 May; 28(5):437-448. |
[34] | Liu H, Xu Y, Xiang J, et al. Targeting alpha-fetoprotein (AFP)-MHC complex with CAR T-cell therapy for liver cancer[J]. Clin Cancer Res, 2017,23(2):478-488. |
[35] | Heidbuechel JPW, Engeland CE. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emer-ging immunovirotherapies[J]. J Hematol Oncol, 2021,14(1):63. |
[36] | Heo J, Reid T, Ruo L, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer[J]. Nat Med, 2013,19(3):329-336. |
[37] | Lee MS, Ryoo BY, Hsu CH, et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study[J]. Lancet Oncol, 2020,21(6):808-820. |
[38] | Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus Bevacizumab in unresectable hepatocellular carcinoma[J]. N Engl J Med, 2020,382(20):1894-1905. |
[39] | Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves Anti-PD-1 immunotherapy[J]. Cell, 2018,174(4):1031-1032. |
/
〈 |
|
〉 |