诊断学理论与实践 ›› 2021, Vol. 20 ›› Issue (05): 427-433.doi: 10.16150/j.1671-2870.2021.05.001
• 专家论坛 • 下一篇
苏长青
收稿日期:
2021-10-18
出版日期:
2021-10-25
发布日期:
2022-06-28
Received:
2021-10-18
Online:
2021-10-25
Published:
2022-06-28
中图分类号:
苏长青. 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021, 20(05): 427-433.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021,71(3):209-249.
doi: 10.3322/caac.21660 URL |
[2] |
Man XB, Tang L, Zhang BH, et al. Upregulation of Glypi-can-3 expression in hepatocellular carcinoma but downregulation in cholangiocarcinoma indicates its differential diagnosis value in primary liver cancers[J]. Liver Int, 2005,25(5):962-966.
doi: 10.1111/j.1478-3231.2005.01100.x URL |
[3] |
Shen Q, Fan J, Yang XR, et al. Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma: a large-scale, multicentre study[J]. Lancet Oncol, 2012,13(8):817-826.
doi: 10.1016/S1470-2045(12)70233-4 URL |
[4] |
Zhou J, Yu L, Gao X, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma[J]. J Clin Oncol, 2011,29(36):4781-4788.
doi: 10.1200/JCO.2011.38.2697 URL |
[5] |
Wang HL, Anatelli F, Zhai QJ, et al. Glypican-3 as a useful diagnostic marker that distinguishes hepatocellular carcinoma from benign hepatocellular mass lesions[J]. Arch Pathol Lab Med, 2008,132(11):1723-1728.
doi: 10.5858/132.11.1723 URL |
[6] |
Zhu ZW, Friess H, Wang L, et al. Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders[J]. Gut, 2001, 48(4):558-564.
pmid: 11247902 |
[7] |
Fu J, Wang H. Precision diagnosis and treatment of liver cancer in China[J]. Cancer Lett, 2018,412:283-288.
doi: 10.1016/j.canlet.2017.10.008 URL |
[8] |
Qin QF, Weng J, Xu GX, et al. Combination of serum tumor markers dickkopf-1, DCP and AFP for the diagnosis of primary hepatocellular carcinoma[J]. Asian Pac J Trop Med, 2017,10(4):409-413.
doi: S1995-7645(16)30238-3 pmid: 28552111 |
[9] |
Ringelhan M, Pfister D, O′Connor T, et al. The immuno-logy of hepatocellular carcinoma[J]. Nat Immunol, 2018, 19(3):222-232.
doi: 10.1038/s41590-018-0044-z pmid: 29379119 |
[10] |
Zheng C, Zheng L, Yoo JK, et al. Landscape of infiltrati-ng T cells in liver cancer revealed by single-cell sequencing[J]. Cell, 2017,169(7):1342-1356.
doi: 10.1016/j.cell.2017.05.035 URL |
[11] |
Chikuma S, Kanamori M, Mise-Omata S, et al. Suppressors of cytokine signaling: potential immune checkpoint molecules for cancer immunotherapy[J]. Cancer Sci, 2017, 108(4):574-580.
doi: 10.1111/cas.13194 URL |
[12] |
Gao Q, Qiu SJ, Fan J, et al. Intratumoral balance of re-gulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection[J]. J Clin Oncol, 2007,25(18):2586-2593.
doi: 10.1200/JCO.2006.09.4565 URL |
[13] |
Devalaraja S, To TKJ, Folkert IW, et al. Tumor-derived retinoic acid regulates intratumoral monocyte differentiation to promote immune suppression[J]. Cell, 2020,180(6):1098-1114,e16.
doi: S0092-8674(20)30219-1 pmid: 32169218 |
[14] |
Pauken KE, Torchia JA, Chaudhri A, et al. Emerging concepts in PD-1 checkpoint biology[J]. Semin Immunol, 2021,52:101480.
doi: 10.1016/j.smim.2021.101480 URL |
[15] |
Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade[J]. Science, 1996, 271(5256):1734-1736.
doi: 10.1126/science.271.5256.1734 pmid: 8596936 |
[16] |
Fan F, Chen K, Lu X, et al. Dual targeting of PD-L1 and PD-L2 by PCED1B-AS1 via sponging hsa-miR-194-5p induces immunosuppression in hepatocellular carcinoma[J]. Hepatol Int, 2021,15(2):444-458.
doi: 10.1007/s12072-020-10101-6 URL |
[17] |
Ma LJ, Feng FL, Dong LQ, et al. Clinical significance of PD-1/PD-Ls gene amplification and overexpression in patients with hepatocellular carcinoma[J]. Theranostics, 2018,8(20):5690-5702.
doi: 10.7150/thno.28742 URL |
[18] |
Lee DH, Lee MW, Kim PN, et al. Outcome of no-touch radiofrequency ablation for small hepatocellular carcinoma: a multicenter clinical trial[J]. Radiology, 2021,301(1):229-236.
doi: 10.1148/radiol.2021210309 URL |
[19] |
Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. N Engl J Med, 2008, 359(4):378-390.
doi: 10.1056/NEJMoa0708857 URL |
[20] |
Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase Ⅲ randomised, double-blind, placebo-controlled trial[J]. Lancet Oncol, 2009,10(1):25-34.
doi: 10.1016/S1470-2045(08)70285-7 URL |
[21] |
Marrero JA, Kudo M, Venook AP, et al. Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: The GIDEON study[J]. J Hepatol, 2016, 65(6):1140-1147.
doi: S0168-8278(16)30346-4 pmid: 27469901 |
[22] |
Qin S, Bi F, Gu S, et al. Donafenib versus Sorafenib in first-line treatment of unresectable or metastatic hepatocellular carcinoma: a randomized, open-label, parallel-controlled phase Ⅱ-Ⅲ trial[J]. J Clin Oncol, 2021,39(27):3002-3011.
doi: 10.1200/JCO.21.00163 URL |
[23] |
Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2017, 389(10064):56-66.
doi: 10.1016/S0140-6736(16)32453-9 URL |
[24] |
Qin S, Li Q, Gu S, et al. Apatinib as second-line or later therapy in patients with advanced hepatocellular carcinoma (AHELP): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial[J]. Lancet Gastroenterol Hepatol, 2021,6(7):559-568.
doi: 10.1016/S2468-1253(21)00109-6 URL |
[25] |
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012,366(26):2443-2454.
doi: 10.1056/NEJMoa1200690 URL |
[26] |
El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017,389(10088):2492-2502.
doi: S0140-6736(17)31046-2 pmid: 28434648 |
[27] |
Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 tria[J]. Lancet Oncol, 2018, 19(7):940-952.
doi: 10.1016/S1470-2045(18)30351-6 URL |
[28] | Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase Ⅲ Trial[J]. J Clin Oncol, 2020,38(3):193-202. |
[29] |
Liu Y, Chen X, Han W, et al. Tisagenlecleucel, an approved anti-CD19 chimeric antigen receptor T-cell therapy for the treatment of leukemia[J]. Drugs Today (Barc), 2017,53(11):597-608.
doi: 10.1358/dot.2017.53.11.2725754 URL |
[30] |
Liu Y, Chen X, Han W, et al. A guide to manufacturing CAR T cell therapies[J]. Drugs Today (Barc), 2017,53(11):597-608.
doi: 10.1358/dot.2017.53.11.2725754 URL |
[31] |
Gao H, Li K, Tu H, et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma[J]. Clin Cancer Res, 2014,20(24):6418-6428.
doi: 10.1158/1078-0432.CCR-14-1170 URL |
[32] |
Dargel C, Bassani-Sternberg M, Hasreiter J, et al. T cells engineered to express a T-cell receptor specific for Glypi-can-3 to recognize and kill hepatoma cells in vitro and in mice[J]. Gastroenterology, 2015,149(4):1042-1052.
doi: 10.1053/j.gastro.2015.05.055 URL |
[33] |
Li W, Guo L, Rathi P, et al. Redirecting T cells to Glypi-can-3 with 4-1BB Zeta chimeric antigen receptors results in Th1 polarization and potent antitumor activity[J]. Hum Gene Ther. 2017 May; 28(5):437-448.
doi: 10.1089/hum.2016.025 URL |
[34] |
Liu H, Xu Y, Xiang J, et al. Targeting alpha-fetoprotein (AFP)-MHC complex with CAR T-cell therapy for liver cancer[J]. Clin Cancer Res, 2017,23(2):478-488.
doi: 10.1158/1078-0432.CCR-16-1203 URL |
[35] |
Heidbuechel JPW, Engeland CE. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emer-ging immunovirotherapies[J]. J Hematol Oncol, 2021,14(1):63.
doi: 10.1186/s13045-021-01075-5 URL |
[36] |
Heo J, Reid T, Ruo L, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer[J]. Nat Med, 2013,19(3):329-336.
doi: 10.1038/nm.3089 URL |
[37] |
Lee MS, Ryoo BY, Hsu CH, et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study[J]. Lancet Oncol, 2020,21(6):808-820.
doi: 10.1016/S1470-2045(20)30156-X URL |
[38] |
Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus Bevacizumab in unresectable hepatocellular carcinoma[J]. N Engl J Med, 2020,382(20):1894-1905.
doi: 10.1056/NEJMoa1915745 URL |
[39] |
Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves Anti-PD-1 immunotherapy[J]. Cell, 2018,174(4):1031-1032.
doi: 10.1016/j.cell.2018.07.035 URL |
[1] | 罗雅方, 徐倩玥, 余红. 尘螨在特应性皮炎中的致病机制及相关免疫治疗应用研究进展[J]. 诊断学理论与实践, 2021, 20(06): 592-595. |
[2] | 吴冬梅, 吴丽莉, 陈佳, 刘坤. 淋巴上皮样肝细胞肝癌一例报告附文献复习[J]. 诊断学理论与实践, 2021, 20(05): 498-501. |
[3] | 周艺, 杨莉. 粒细胞-巨噬细胞集落刺激因子在肿瘤免疫治疗中的作用机制及临床应用进展[J]. 诊断学理论与实践, 2021, 20(04): 407-413. |
[4] | 汪楠, 郝风节, 王俊青. 肝细胞多倍体发生机制及其与肝细胞癌形成的相关性研究进展[J]. 诊断学理论与实践, 2020, 19(06): 618-621. |
[5] | 朱迪, 朱晓娜, 杨烁, 何平, 沈少明, 余韵. 酸性亮氨酸核磷酸蛋白32B 在肝癌组织表达增强并促进肝癌细胞生长的研究[J]. 诊断学理论与实践, 2019, 18(2): 170-176. |
[6] | 蔡业冰, 任家俊, 郝风节, 叶枫, 杨宇尘, 龚笑勇, 马迪, 王俊青, 陈拥军. 人类假基因在以肝癌为主的肿瘤中的作用及研究进展[J]. 诊断学理论与实践, 2019, 18(05): 590-594. |
[7] | 罗清琼, 陈福祥. 肿瘤免疫治疗策略的转变及相关标志物研究现状[J]. 诊断学理论与实践, 2019, 18(04): 387-393. |
[8] | 王晓斐, 高蓓莉. 肺癌免疫治疗标志物研究进展认识[J]. 诊断学理论与实践, 2018, 17(05): 494-498. |
[9] | 娄加陶, 张宸梓. 外泌体的检测及临床应用[J]. 诊断学理论与实践, 2018, 17(02): 141-146. |
[10] | 张海晨, 陈佳, 宋云霄, 蔡海斌, 丰睿捷, 倪培华, 刘湘帆,. 肝癌高表达转录本调控microRNA613促进肝癌细胞增殖的机制研究[J]. 诊断学理论与实践, 2015, 14(06): 533-538. |
[11] | 李晓雅, 苏长青,. 蛋白激酶B活化诱导骨桥蛋白表达与肝癌细胞骨转移间的关系[J]. 诊断学理论与实践, 2013, 12(06): 600-605. |
[12] | 黄燕, 王娟, 李莉,. sFcεRI的特点及临床研究介绍[J]. 诊断学理论与实践, 2013, 12(06): 660-662. |
[13] | 程铖, 周军, 季君, 王坤, 刘艳, 殷月鹏, 高春芳,. 原发性肝细胞肝癌患者血清CTGF测定的临床意义[J]. 诊断学理论与实践, 2013, 12(05): 545-548. |
[14] | 吴丽莉, 王黎, 许海敏, 李芹芹, 刘强,. 血管免疫母细胞性T细胞淋巴瘤肿瘤细胞及其微环境病理学特征[J]. 诊断学理论与实践, 2013, 12(03): 320-325. |
[15] | 夏燕, 丁秋兰, 许冠群, 张利伟, 戴菁, 陆晔玲, 王学锋, 奚晓东, 王鸿利,. 一个新的剪接位点突变g.13776_13777insAGGT导致Ⅰ型遗传性抗凝血酶缺陷症[J]. 诊断学理论与实践, 2012, 11(03): 252-257. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||