论著

深度学习重建算法在低管电压冠状动脉CT血管成像中的应用

展开
  • 1.上海交通大学医学院附属瑞金医院放射科,上海 200025
    2.GE(中国)CT影像研究中心,上海 201203

收稿日期: 2021-12-14

  网络出版日期: 2022-08-17

The application of deep learning algorithm reconstruction in low tube voltage coronary CT angiography

Expand
  • 1. Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
    2. GE CT Imaging Research Center, Shanghai 201203, China

Received date: 2021-12-14

  Online published: 2022-08-17

摘要

目的:比较深度学习重建算法(deep learning-based image reconstruction,DLIR)、自适应统计迭代重建算法(adaptive statistical iterative reconstruction-veo,ASiR-V)和滤波反投影重建算法(filtered back-projection,FBP)对低管电压冠状动脉CT血管成像(coronary computed tomographic angiography,CCTA)图像质量的优化效果。方法:前瞻性纳入100例行CCTA扫描的患者,根据其身体质量指数(body mass index,BMI),选择使用70 kVp(50例,BMI≤26 kg/m2)或80 kVp(50例,BMI>26 kg/m2)管电压扫描,每例患者的图像分别用FBP(A组)、ASiR-V 50%(B组)、 中级DLIR(DLIR-Medium,DLIR-M,C组)和高级DLIR(DLIR-High,DLIR-H,D组)进行重建,比较4组重建算法图像的CT值、噪声、信噪比(signal-to-noise ratio,SNR)和对比噪声比(contrast-noise ratio,CNR),并采用李克特5级评分法对图像质量进行主观评价。结果:在客观图像质量评价中, A、B、C、D 4组两两组间比较,图像噪声、SNR、CNR差异均有统计学意义(P<0.05),其中D组的图像噪声最低,而SNR和CNR最高;在主观图像质量评价中,C组与D组间差异无统计学意义,但均明显高于A组及B组(P<0.05)。结论:在低管电压CCTA扫描中,使用DLIR重建的图像质量优于ASiR-V 50% 和FBP,提示DLIR适用于临床低管电压CCTA扫描。

本文引用格式

范婧, 杨文洁, 王梦真, 陆伟, 石骁萌, 朱宏 . 深度学习重建算法在低管电压冠状动脉CT血管成像中的应用[J]. 诊断学理论与实践, 2022 , 21(03) : 374 -379 . DOI: 10.16150/j.1671-2870.2022.03.014

Abstract

Objective: To compare the quality of low tube voltage coronary CT angiography (CCTA) images reconstructed with deep learning-based image reconstruction (DLIR) and with filter back projection (FBP) and with adaptive statistical iterative reconstruction-veo (ASiR-V). Methods: One hundred patients who underwent CCTA were included. The CCTA tube voltage were set as 70 kVp (n=50, BMI≤26 kg/m2) and 80 kVp (n=50, BMI>26 kg/m2) according to body mass index(BMI). The images were reconstructed with FBP (Group A), ASIR-V 50% (Group B), DLIR at medium (DLIR-M, Group C) and high DLIR(DLIR-H, Group D) levels, respectively. Objective evaluation indice including CT attenuation, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio(CNR) were measured or calculated between groups, and Likert 5-point scale was adopted for subjective image quality assessment. Results: There were significant differences in image noise, SNR, CNR among the 4 groups(P<0.05), and Group D had the highest SNR and CNR, and lowest noise. There was no significant difference between Group C and Group D in subjective scores, but Group C and D both had higher subjective scores than those of Group A and B (P<0.05). Conclusions: For low tube voltage CCTA, images reconstructed with DLIR generate higher quality,and DLIR may be suitable to apply in low tube voltage CCTA.

参考文献

[1] 沈洁云, 王忠敏, 陈克敏. 冠状动脉斑块的CT血管造影评价[J]. 中国医学计算机成像杂志, 2016, 22(1):97-100.
[1] Shen JY, Wang ZM, Chen KM. CT Angiographic Evaluation of Coronary Artery Plaque[J]. Chin Comput Med Imag, 2016, 22(1):97-100.
[2] Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography[J]. JAMA, 2007, 298(3):317-323.
[3] Small GR, Kazmi M, Dekemp RA, et al. Established and emerging dose reduction methods in cardiac computed tomography[J]. J Nucl Cardiol, 2011, 18(4):570-579.
[4] Willemink MJ, Noël PB. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence[J]. Eur Radiol, 2019, 29(5):2185-2195.
[5] McCollough CH. CT dose: how to measure, how to reduce[J]. Health Phys, 2008, 95(5):508-517.
[6] Hsieh J, Liu E, Nett B, et al. A new era of image reconstruction: True Fidelity? Technical white paper on deep learning image reconstruction[R/OL]. https://www.gehealthcare.com/-/jssmedia/040dd213fa89463287155151fdb01922.pdf.
[7] Greffier J, Hamard A, Pereira F, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study[J]. Eur Radiol, 2020, 30(7):3951-3959.
[8] Kim JH, Yoon HJ, Lee E, et al. Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise[J]. Korean J Radiol, 2021, 22(1):131-138.
[9] Kim I, Kang H, Yoon HJ, et al. Deep learning-based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo(ASIR-V)[J]. Neuroradiology, 2021, 63(6):905-912.
[10] Cao L, Liu X, Li J, et al. A study of using a deep lear-ning image reconstruction to improve the image quality of extremely low-dose contrast-enhanced abdominal CT for patients with hepatic lesions[J]. Br J Radiol, 2021, 94(1118):20201086.
[11] Benz DC, Benetos G, Rampidis G, et al. Validation of deep-learning image reconstruction for coronary compu-ted tomography angiography: Impact on noise, image quality and diagnostic accuracy[J]. J Cardiovasc Comput Tomogr, 2020, 14(5):444-451.
[12] 中华医学会放射学分会质量控制与安全管理专业委员会. 心血管CT成像辐射剂量优化中国专家共识[J]. 中华医学杂志, 2016(7):510-516.
[12] Quality Control and Safety Management Committee of Radiology branch of Chinese Medical Association. Chinese experts′ consensus on radiation dose optimization of cardiovascular CT imaging[J]. Natl Med J China, 2016(7):510-516.
[13] Yin WH, Lu B, Gao JB, et al. Effect of reduced x-ray tube voltage, low iodine concentration contrast medium, and sinogram-affirmed iterative reconstruction on image quality and radiation dose at coronary CT angiography: results of the prospective multicenter REALISE trial[J]. J Cardiovasc Comput Tomogr, 2015, 9(3):215-224.
文章导航

/