诊断学理论与实践 ›› 2022, Vol. 21 ›› Issue (03): 374-379.doi: 10.16150/j.1671-2870.2022.03.014

• 论著 • 上一篇    下一篇

深度学习重建算法在低管电压冠状动脉CT血管成像中的应用

范婧1, 杨文洁1, 王梦真1, 陆伟2, 石骁萌2, 朱宏1()   

  1. 1.上海交通大学医学院附属瑞金医院放射科,上海 200025
    2.GE(中国)CT影像研究中心,上海 201203
  • 收稿日期:2021-12-14 出版日期:2022-06-25 发布日期:2022-08-17
  • 通讯作者: 朱宏 E-mail:zh40423@rjh.com.cn

The application of deep learning algorithm reconstruction in low tube voltage coronary CT angiography

FAN Jing1, YANG Wenjie1, WANG Mengzhen1, LU Wei2, SHI Xiaomeng2, ZHU Hong1()   

  1. 1. Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
    2. GE CT Imaging Research Center, Shanghai 201203, China
  • Received:2021-12-14 Online:2022-06-25 Published:2022-08-17
  • Contact: ZHU Hong E-mail:zh40423@rjh.com.cn

摘要:

目的:比较深度学习重建算法(deep learning-based image reconstruction,DLIR)、自适应统计迭代重建算法(adaptive statistical iterative reconstruction-veo,ASiR-V)和滤波反投影重建算法(filtered back-projection,FBP)对低管电压冠状动脉CT血管成像(coronary computed tomographic angiography,CCTA)图像质量的优化效果。方法:前瞻性纳入100例行CCTA扫描的患者,根据其身体质量指数(body mass index,BMI),选择使用70 kVp(50例,BMI≤26 kg/m2)或80 kVp(50例,BMI>26 kg/m2)管电压扫描,每例患者的图像分别用FBP(A组)、ASiR-V 50%(B组)、 中级DLIR(DLIR-Medium,DLIR-M,C组)和高级DLIR(DLIR-High,DLIR-H,D组)进行重建,比较4组重建算法图像的CT值、噪声、信噪比(signal-to-noise ratio,SNR)和对比噪声比(contrast-noise ratio,CNR),并采用李克特5级评分法对图像质量进行主观评价。结果:在客观图像质量评价中, A、B、C、D 4组两两组间比较,图像噪声、SNR、CNR差异均有统计学意义(P<0.05),其中D组的图像噪声最低,而SNR和CNR最高;在主观图像质量评价中,C组与D组间差异无统计学意义,但均明显高于A组及B组(P<0.05)。结论:在低管电压CCTA扫描中,使用DLIR重建的图像质量优于ASiR-V 50% 和FBP,提示DLIR适用于临床低管电压CCTA扫描。

关键词: 冠状动脉CT血管成像, 深度学习, 迭代重建, 辐射剂量, 图像质量

Abstract:

Objective: To compare the quality of low tube voltage coronary CT angiography (CCTA) images reconstructed with deep learning-based image reconstruction (DLIR) and with filter back projection (FBP) and with adaptive statistical iterative reconstruction-veo (ASiR-V). Methods: One hundred patients who underwent CCTA were included. The CCTA tube voltage were set as 70 kVp (n=50, BMI≤26 kg/m2) and 80 kVp (n=50, BMI>26 kg/m2) according to body mass index(BMI). The images were reconstructed with FBP (Group A), ASIR-V 50% (Group B), DLIR at medium (DLIR-M, Group C) and high DLIR(DLIR-H, Group D) levels, respectively. Objective evaluation indice including CT attenuation, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio(CNR) were measured or calculated between groups, and Likert 5-point scale was adopted for subjective image quality assessment. Results: There were significant differences in image noise, SNR, CNR among the 4 groups(P<0.05), and Group D had the highest SNR and CNR, and lowest noise. There was no significant difference between Group C and Group D in subjective scores, but Group C and D both had higher subjective scores than those of Group A and B (P<0.05). Conclusions: For low tube voltage CCTA, images reconstructed with DLIR generate higher quality,and DLIR may be suitable to apply in low tube voltage CCTA.

Key words: Coronary CT angiography, Deep learning, Iterative reconstruction, Radiation dose, Image quality

中图分类号: