综述

尤文肉瘤分子病理学研究进展

展开
  • 上海交通大学医学院附属瑞金医院病理科,上海 200025
王朝夫 E-mail: wcf11956@rjh.com.cn

收稿日期: 2023-05-20

  网络出版日期: 2024-03-18

Advances in molecular pathology of Ewing sarcoma

Expand
  • Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Received date: 2023-05-20

  Online published: 2024-03-18

摘要

尤文肉瘤是一种罕见的小圆细胞恶性肿瘤,软组织与骨肿瘤世界卫生组织(World Health Organizition,WHO)分类第五版(2020年)将其归类于未分化小圆细胞肉瘤。尤文肉瘤由形态单一的小圆形细胞构成,免疫组织化学检测提示细胞膜CD99阳性,伴有不同程度的神经外胚层分化,并具有特征性的FET家族-ETS家族融合基因。手术联合化疗的治疗方式已将尤文肉瘤患者的5年生存率提高到约70%,但如患者诊断时已出现肿瘤转移,其5年生存率仍不到30%。随着分子病理学的飞速发展,尤文肉瘤的分子机制(特征性FET-ETS家族融合突变及常见伴随突变)也成为了研究热点。在诊断方面,研究者对尤文肉瘤特征性基因重排的不断深入了解,如罕见的TAF15-ETV4融合基因尤文肉瘤病例的发现,提示全基因组测序用于诊断尤文肉瘤的重要性已不容忽视。在治疗方面,许多针对特征性FET家族-ETS家族融合基因的药物正在临床试验中。2022年,尤文肉瘤的第一个重复出现的可作为分子治疗靶点的伴随突变——FGFR1突变被发现,提示伴随突变可能是尤文肉瘤分子治疗的突破点之一。2023年最新研究指出ETV6可能成为未来尤文肉瘤治疗的新靶点之一。本文总结尤文肉瘤的分子病理研究进展,并探讨其在尤文肉瘤的临床诊断、治疗和预后中的价值。

本文引用格式

刘蘅安, 王朝夫 . 尤文肉瘤分子病理学研究进展[J]. 诊断学理论与实践, 2023 , 22(06) : 587 -592 . DOI: 10.16150/j.1671-2870.2023.06.012

Abstract

Ewing sarcoma is a rare malignant small round cell mesenchymal neoplasm with a characteristic FET family-ETS family fusion gene, and is classified as undifferentiated small round cell sarcoma in the fifth revision of the WHO Classification of Tumors of Soft Tissue and Bone (2020). Microscopically, Ewing sarcoma is composed of a monomorphic round cell population, accompanied by different degrees of neuroectodermal differentiation. Although surgery combined with chemotherapy has increased the 5-year survival rate of Ewing sarcoma to about 70%, the 5-year survival rate of patients with metastases at diagnosis is still less than 30%. With the rapid development of molecular pathology, the molecular mechanism of Ewing sarcoma has also become a focus of research. This article reviews the latest research progress on the unique pathological features, molecular mechanisms and genetic diagnostic criteria of Ewing sarcoma, in order to provide a new direction for the clinical diagnosis, treatment and prognosis of Ewing sarcoma.

参考文献

[1] GEREIGE R, KUMAR M. Bone lesions: benign and malignant[J]. Pediatr Rev, 2010, 31(9):355-362.
[2] RIGGI N, SUVà M L, STAMENKOVIC I. Ewing's Sarcoma[J]. N Engl J Med, 2021, 384(2):154-164.
[3] BOARD W C O T E. World Health Organization classification of soft tissue and bone tumours, 5th ed[M]. Lyon (France):International Agency for Research on Cancer. Lyon (France): International Agency for Research on Cancer, 2020.
[4] 魏雪静, 程鸣. 尤文肉瘤及尤文样肉瘤临床病理学研究进展[J]. 中国肿瘤临床, 2020, 47(15):803-808.
  WEI X J, CHENG M. Progress in clinicopathological features of Ewing's sarcoma and Ewing-like sarcoma[J]. Chin J Clin Oncol, 2020, 47(15):803-808.
[5] EWING J. Classics in oncology. Diffuse endothelioma of bone. James Ewing. Proceedings of the New York Pathological Society, 1921[J]. CA Cancer J Clin, 1972, 22(2):95-98.
[6] AURIAS A, RIMBAUT C, BUFFE D, et al. Translocation involving chromosome 22 in Ewing's sarcoma. A cytogenetic study of four fresh tumors[J]. Cancer Genet Cytogenet, 1984, 12(1):21-25.
[7] TURC-CAREL C, PHILIP I, BERGER M P, et al. Chromosome study of Ewing's sarcoma (ES) cell lines. Consistency of a reciprocal translocation t(11;22)(q24;q12)[J]. Cancer Genet Cytogenet, 1984, 12(1):1-19.
[8] COTTERILL S J, AHRENS S, PAULUSSEN M, et al. Prognostic factors in Ewing's tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing's Sarcoma Study Group[J]. J Clin Oncol, 2000, 18(17):3108-3114.
[9] CARUSO J, SHULMAN D S, DUBOIS S G. Second malignancies in patients treated for Ewing sarcoma: A systematic review[J]. Pediatr Blood Cancer, 2019, 66(11):e27938.
[10] MARINA N M, LIU Q, DONALDSON S S, et al. Longitudinal follow-up of adult survivors of Ewing sarcoma: A report from the Childhood Cancer Survivor Study[J]. Cancer, 2017, 123(13):2551-2560.
[11] SHULMAN D S, WHITTLE S B, SURDEZ D, et al. An international working group consensus report for the prio-ritization of molecular biomarkers for Ewing sarcoma[J]. NPJ Precis Oncol, 2022, 6(1):65.
[12] OGURA K, ELKRIEF A, BOWMAN A S, et al. Prospective Clinical Genomic Profiling of Ewing Sarcoma: ERF and FGFR1 Mutations as Recurrent Secondary Alterations of Potential Biologic and Therapeutic Relevance[J]. JCO Precis Oncol, 2022, 6:e2200048.
[13] LLOMBART-BOSCH A, MACHADO I, NAVARRO S, et al. Histological heterogeneity of Ewing's sarcoma/PNET: an immunohistochemical analysis of 415 genetically confirmed cases with clinical support[J]. Virchows Arch, 2009, 455(5):397-411.
[14] SBARAGLIA M, RIGHI A, GAMBAROTTI M, et al. Ewi-ng sarcoma and Ewing-like tumors[J]. Virchows Arch, 2020, 476(1):109-119.
[15] LUM C A, MOTAMED N A, HWANG C D, et al. Pleomorphic atypical extraosseous ewing sarcoma in a 25-year-old woman: a cytogenetic diagnosis[J]. Appl Immunohistochem Mol Morphol, 2005, 13(2):201-204.
[16] YOSHIDA A, SEKINE S, TSUTA K, et al. NKX2.2 is a useful immunohistochemical marker for Ewing sarcoma[J]. Am J Surg Pathol, 2012, 36(7):993-999.
[17] SHIBUYA R, MATSUYAMA A, NAKAMOTO M, et al. The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma[J]. Virchows Arch, 2014, 465(5):599-605.
[18] WANG W L, PATEL N R, CARAGEA M, et al. Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma[J]. Mod Pathol, 2012, 25(10):1378-1383.
[19] SANNINO G, MARCHETTO A, RANFT A, et al. Gene expression and immunohistochemical analyses identify SOX2 as major risk factor for overall survival and relapse in Ewing sarcoma patients[J]. EBioMedicine, 2019,47:156-162.
[20] MACHADO I, LóPEZ-GUERRERO J A, SCOTLANDI K, et al. Immunohistochemical analysis and prognostic significance of PD-L1, PD-1, and CD8+ tumor-infiltrating lymphocytes in Ewing's sarcoma family of tumors (ESFT)[J]. Virchows Arch, 2018, 472(5):815-824.
[21] TIRODE F, SURDEZ D, MA X, et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations[J]. Cancer Discov, 2014, 4(11):1342-1353.
[22] SORENSEN P H, LESSNICK S L, LOPEZ-TERRADA D, et al. A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG[J]. Nat Genet, 1994, 6(2):146-151.
[23] SHING D C, MCMULLAN D J, ROBERTS P, et al. FUS/ERG gene fusions in Ewing's tumors[J]. Cancer Res, 2003, 63(15):4568-4576.
[24] LE DELEY M C, DELATTRE O, SCHAEFER K L, et al. Impact of EWS-ETS fusion type on disease progression in Ewing's sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial[J]. J Clin Oncol, 2010, 28(12):1982-1988.
[25] HARRISON A F, SHORTER J. RNA-binding proteins with prion-like domains in health and disease[J]. Biochem J, 2017, 474(8):1417-1438.
[26] LI K K, LEE K A. Transcriptional activation by the Ewi-ng's sarcoma (EWS) oncogene can be cis-repressed by the EWS RNA-binding domain[J]. J Biol Chem, 2000, 275(30):23053-23058.
[27] TOMLINS S A, RHODES D R, PERNER S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer[J]. Science, 2005, 310(5748):644-648.
[28] FINDLAY V J, LARUE A C, TURNER D P, et al. Understanding the role of ETS-mediated gene regulation in complex biological processes[J]. Adv Cancer Res, 2013,119:1-61.
[29] PICARD C, MACAGNO N, CORRADINI N, et al. Identification of a novel translocation producing an in-frame fusion of TAF15 and ETV4 in a case of extraosseous Ewing sarcoma revealed in the prenatal period[J]. Virchows Arch, 2022, 481(4):665-669.
[30] GUILLON N, TIRODE F, BOEVA V, et al. The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function[J]. PLoS One, 2009, 4(3):e4932.
[31] RIGGI N, KNOECHEL B, GILLESPIE S M, et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma[J]. Cancer Cell, 2014, 26(5):668-681.
[32] GORTHI A, ROMERO J C, LORANC E, et al. EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma[J]. Nature, 2018, 555(7696):387-391.
[33] ABBOTT D, O'BRIEN S, FARNHAM J M, et al. Increased risk for other cancers in individuals with Ewing sarcoma and their relatives[J]. Cancer Med, 2019, 8(18):7924-7930.
[34] CROMPTON B D, STEWART C, TAYLOR-WEINER A, et al. The genomic landscape of pediatric Ewing sarcoma[J]. Cancer Discov, 2014, 4(11):1326-1341.
[35] SOLOMON D A, KIM T, DIAZ-MARTINEZ L A, et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer[J]. Science, 2011, 333(6045):1039-1043.
[36] PATEL M, GOMEZ N C, MCFADDEN A W, et al. PTEN deficiency mediates a reciprocal response to IGFI and mTOR inhibition[J]. Mol Cancer Res, 2014, 12(11):1610-1620.
[37] NIEMEYER B F, PARRISH J K, SPOELSTRA N S, et al. Variable expression of PIK3R3 and PTEN in Ewing Sarcoma impacts oncogenic phenotypes[J]. PLoS One, 2015, 10(1):e0116895.
[38] DE VITO C, RIGGI N, CORNAZ S, et al. A TARBP2-dependent miRNA expression profile underlies cancer stem cell properties and provides candidate therapeutic rea-gents in Ewing sarcoma[J]. Cancer Cell, 2012, 21(6):807-821.
[39] 中国抗癌协会肉瘤专业委员会. 骨与软组织肿瘤二代测序中国专家共识(2021年版)[J]. 中国肿瘤临床, 2021, 48(20):1027-1035.
  China Anti-Cancer Association Committee of Sarcoma. Chinese expert consensus on the application of next-gene-ration sequencing for bone and soft tissue tumors (2021 version)[J]. Chin J Clin Oncol, 2021, 48(20):1027-1035.
[40] GUSHO C A, WEISS M C, LEE L, et al. The clinical uti-lity of next-generation sequencing for bone and soft tissue sarcoma[J]. Acta Oncol, 2022, 61(1):38-44.
[41] 唐天喜, 杨溯, 韩鹏飞, 等. 尤文肉瘤分子病理学诊断与治疗的研究新进展[J]. 基层医学论坛, 2022, 26(7):124-126.
  TANG T X, YANG S, HAN P F, et al. New progress in molecular pathology diagnosis and treatment of Ewing's sarcoma[J]. Med Forum, 2022, 26(7):124-126.
[42] ERKIZAN H V, KONG Y, MERCHANT M, et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma[J]. Nat Med, 2009, 15(7):750-756.
[43] BRENNER J C, FENG F Y, HAN S, et al. PARP-1 inhibition as a targeted strategy to treat Ewing's sarcoma[J]. Cancer Res, 2012, 72(7):1608-1613.
[44] CORNAZ-BUROS S, RIGGI N, DEVITO C, et al. Targe-ting cancer stem-like cells as an approach to defeating cellular heterogeneity in Ewing sarcoma[J]. Cancer Res, 2014, 74(22):6610-6622.
[45] LAMHAMEDI-CHERRADI S E, MENEGAZ B A, RAMAMOORTHY V, et al. An Oral Formulation of YK-4-279: Preclinical Efficacy and Acquired Resistance Patterns in Ewing Sarcoma[J]. Mol Cancer Ther, 2015, 14(7):1591-1604.
[46] LUDWIG J A, FEDERMAN N C, ANDERSON P M, et al. TK 216 for relapsed/refractory Ewing sarcoma: Interim phase 1/2 results[J]. Journal of Clinical Oncology, 2021, 39(15_suppl):11500.
[47] BENNANI-BAITI I M, MACHADO I, LLOMBART-BOSCH A, et al. Lysine-specific demethylase 1 (LSD1/KDM1A/AOF2/BHC110) is expressed and is an epigenetic drug target in chondrosarcoma, Ewing's sarcoma, osteosarcoma, and rhabdomyosarcoma[J]. Hum Pathol, 2012, 43(8):1300-1307.
[48] PISHAS K I, DRENBERG C D, TASLIM C, et al. Therapeutic Targeting of KDM1A/LSD1 in Ewing Sarcoma with SP-2509 Engages the Endoplasmic Reticulum Stress Response[J]. Mol Cancer Ther, 2018, 17(9):1902-1916.
[49] GAO Y, HE X Y, WU X S, et al. ETV6 dependency in Ewing sarcoma by antagonism of EWS-FLI1-mediated enhancer activation[J]. Nat Cell Biol, 2023, 25(2):298-308.
[50] THOMSON D W, DINGER M E. Endogenous microRNA sponges: evidence and controversy[J]. Nat Rev Genet, 2016, 17(5):272-283.
[51] ROBERTO G M, VIEIRA G M, DELSIN L E A, et al. MiR-708-5p is inversely associated with EWS/FLI1 Ewi-ng sarcoma but does not represent a prognostic predictor[J]. Cancer Genet, 2019,230:21-27.
文章导航

/