诊断学理论与实践 ›› 2023, Vol. 22 ›› Issue (06): 587-592.doi: 10.16150/j.1671-2870.2023.06.012
收稿日期:
2023-05-20
出版日期:
2023-12-25
发布日期:
2024-03-18
通讯作者:
王朝夫 E-mail: wcf11956@rjh.com.cnReceived:
2023-05-20
Published:
2023-12-25
Online:
2024-03-18
摘要:
尤文肉瘤是一种罕见的小圆细胞恶性肿瘤,软组织与骨肿瘤世界卫生组织(World Health Organizition,WHO)分类第五版(2020年)将其归类于未分化小圆细胞肉瘤。尤文肉瘤由形态单一的小圆形细胞构成,免疫组织化学检测提示细胞膜CD99阳性,伴有不同程度的神经外胚层分化,并具有特征性的FET家族-ETS家族融合基因。手术联合化疗的治疗方式已将尤文肉瘤患者的5年生存率提高到约70%,但如患者诊断时已出现肿瘤转移,其5年生存率仍不到30%。随着分子病理学的飞速发展,尤文肉瘤的分子机制(特征性FET-ETS家族融合突变及常见伴随突变)也成为了研究热点。在诊断方面,研究者对尤文肉瘤特征性基因重排的不断深入了解,如罕见的TAF15-ETV4融合基因尤文肉瘤病例的发现,提示全基因组测序用于诊断尤文肉瘤的重要性已不容忽视。在治疗方面,许多针对特征性FET家族-ETS家族融合基因的药物正在临床试验中。2022年,尤文肉瘤的第一个重复出现的可作为分子治疗靶点的伴随突变——FGFR1突变被发现,提示伴随突变可能是尤文肉瘤分子治疗的突破点之一。2023年最新研究指出ETV6可能成为未来尤文肉瘤治疗的新靶点之一。本文总结尤文肉瘤的分子病理研究进展,并探讨其在尤文肉瘤的临床诊断、治疗和预后中的价值。
中图分类号:
刘蘅安, 王朝夫. 尤文肉瘤分子病理学研究进展[J]. 诊断学理论与实践, 2023, 22(06): 587-592.
LIU Hengan, WANG Chaofu. Advances in molecular pathology of Ewing sarcoma[J]. Journal of Diagnostics Concepts & Practice, 2023, 22(06): 587-592.
[1] |
GEREIGE R, KUMAR M. Bone lesions: benign and malignant[J]. Pediatr Rev, 2010, 31(9):355-362.
doi: 10.1542/pir.31-9-355 pmid: 20810699 |
[2] |
RIGGI N, SUVÀ M L, STAMENKOVIC I. Ewing's Sarcoma[J]. N Engl J Med, 2021, 384(2):154-164.
doi: 10.1056/NEJMra2028910 URL |
[3] | BOARD W C O T E. World Health Organization classification of soft tissue and bone tumours, 5th ed[M]. Lyon (France):International Agency for Research on Cancer. Lyon (France): International Agency for Research on Cancer, 2020. |
[4] | 魏雪静, 程鸣. 尤文肉瘤及尤文样肉瘤临床病理学研究进展[J]. 中国肿瘤临床, 2020, 47(15):803-808. |
WEI X J, CHENG M. Progress in clinicopathological features of Ewing's sarcoma and Ewing-like sarcoma[J]. Chin J Clin Oncol, 2020, 47(15):803-808. | |
[5] |
EWING J. Classics in oncology. Diffuse endothelioma of bone. James Ewing. Proceedings of the New York Pathological Society, 1921[J]. CA Cancer J Clin, 1972, 22(2):95-98.
doi: 10.3322/canjclin.22.2.95 URL |
[6] |
AURIAS A, RIMBAUT C, BUFFE D, et al. Translocation involving chromosome 22 in Ewing's sarcoma. A cytogenetic study of four fresh tumors[J]. Cancer Genet Cytogenet, 1984, 12(1):21-25.
doi: 10.1016/0165-4608(84)90003-7 URL |
[7] |
TURC-CAREL C, PHILIP I, BERGER M P, et al. Chromosome study of Ewing's sarcoma (ES) cell lines. Consistency of a reciprocal translocation t(11;22)(q24;q12)[J]. Cancer Genet Cytogenet, 1984, 12(1):1-19.
doi: 10.1016/0165-4608(84)90002-5 URL |
[8] |
COTTERILL S J, AHRENS S, PAULUSSEN M, et al. Prognostic factors in Ewing's tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing's Sarcoma Study Group[J]. J Clin Oncol, 2000, 18(17):3108-3114.
doi: 10.1200/JCO.2000.18.17.3108 pmid: 10963639 |
[9] |
CARUSO J, SHULMAN D S, DUBOIS S G. Second malignancies in patients treated for Ewing sarcoma: A systematic review[J]. Pediatr Blood Cancer, 2019, 66(11):e27938.
doi: 10.1002/pbc.v66.11 URL |
[10] |
MARINA N M, LIU Q, DONALDSON S S, et al. Longitudinal follow-up of adult survivors of Ewing sarcoma: A report from the Childhood Cancer Survivor Study[J]. Cancer, 2017, 123(13):2551-2560.
doi: 10.1002/cncr.30627 pmid: 28222219 |
[11] | SHULMAN D S, WHITTLE S B, SURDEZ D, et al. An international working group consensus report for the prio-ritization of molecular biomarkers for Ewing sarcoma[J]. NPJ Precis Oncol, 2022, 6(1):65. |
[12] | OGURA K, ELKRIEF A, BOWMAN A S, et al. Prospective Clinical Genomic Profiling of Ewing Sarcoma: ERF and FGFR1 Mutations as Recurrent Secondary Alterations of Potential Biologic and Therapeutic Relevance[J]. JCO Precis Oncol, 2022, 6:e2200048. |
[13] |
LLOMBART-BOSCH A, MACHADO I, NAVARRO S, et al. Histological heterogeneity of Ewing's sarcoma/PNET: an immunohistochemical analysis of 415 genetically confirmed cases with clinical support[J]. Virchows Arch, 2009, 455(5):397-411.
doi: 10.1007/s00428-009-0842-7 URL |
[14] |
SBARAGLIA M, RIGHI A, GAMBAROTTI M, et al. Ewi-ng sarcoma and Ewing-like tumors[J]. Virchows Arch, 2020, 476(1):109-119.
doi: 10.1007/s00428-019-02720-8 |
[15] |
LUM C A, MOTAMED N A, HWANG C D, et al. Pleomorphic atypical extraosseous ewing sarcoma in a 25-year-old woman: a cytogenetic diagnosis[J]. Appl Immunohistochem Mol Morphol, 2005, 13(2):201-204.
doi: 10.1097/01.pai.0000126109.11438.d8 URL |
[16] |
YOSHIDA A, SEKINE S, TSUTA K, et al. NKX2.2 is a useful immunohistochemical marker for Ewing sarcoma[J]. Am J Surg Pathol, 2012, 36(7):993-999.
doi: 10.1097/PAS.0b013e31824ee43c pmid: 22446943 |
[17] |
SHIBUYA R, MATSUYAMA A, NAKAMOTO M, et al. The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma[J]. Virchows Arch, 2014, 465(5):599-605.
doi: 10.1007/s00428-014-1627-1 URL |
[18] |
WANG W L, PATEL N R, CARAGEA M, et al. Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma[J]. Mod Pathol, 2012, 25(10):1378-1383.
doi: 10.1038/modpathol.2012.97 URL |
[19] | SANNINO G, MARCHETTO A, RANFT A, et al. Gene expression and immunohistochemical analyses identify SOX2 as major risk factor for overall survival and relapse in Ewing sarcoma patients[J]. EBioMedicine, 2019,47:156-162. |
[20] |
MACHADO I, LÓPEZ-GUERRERO J A, SCOTLANDI K, et al. Immunohistochemical analysis and prognostic significance of PD-L1, PD-1, and CD8+ tumor-infiltrating lymphocytes in Ewing's sarcoma family of tumors (ESFT)[J]. Virchows Arch, 2018, 472(5):815-824.
doi: 10.1007/s00428-018-2316-2 |
[21] |
TIRODE F, SURDEZ D, MA X, et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations[J]. Cancer Discov, 2014, 4(11):1342-1353.
doi: 10.1158/2159-8290.CD-14-0622 pmid: 25223734 |
[22] |
SORENSEN P H, LESSNICK S L, LOPEZ-TERRADA D, et al. A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG[J]. Nat Genet, 1994, 6(2):146-151.
doi: 10.1038/ng0294-146 pmid: 8162068 |
[23] |
SHING D C, MCMULLAN D J, ROBERTS P, et al. FUS/ERG gene fusions in Ewing's tumors[J]. Cancer Res, 2003, 63(15):4568-4576.
pmid: 12907633 |
[24] | LE DELEY M C, DELATTRE O, SCHAEFER K L, et al. Impact of EWS-ETS fusion type on disease progression in Ewing's sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial[J]. J Clin Oncol, 2010, 28(12):1982-1988. |
[25] |
HARRISON A F, SHORTER J. RNA-binding proteins with prion-like domains in health and disease[J]. Biochem J, 2017, 474(8):1417-1438.
doi: 10.1042/BCJ20160499 pmid: 28389532 |
[26] |
LI K K, LEE K A. Transcriptional activation by the Ewi-ng's sarcoma (EWS) oncogene can be cis-repressed by the EWS RNA-binding domain[J]. J Biol Chem, 2000, 275(30):23053-23058.
doi: 10.1074/jbc.M002961200 URL |
[27] |
TOMLINS S A, RHODES D R, PERNER S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer[J]. Science, 2005, 310(5748):644-648.
doi: 10.1126/science.1117679 pmid: 16254181 |
[28] | FINDLAY V J, LARUE A C, TURNER D P, et al. Understanding the role of ETS-mediated gene regulation in complex biological processes[J]. Adv Cancer Res, 2013,119:1-61. |
[29] |
PICARD C, MACAGNO N, CORRADINI N, et al. Identification of a novel translocation producing an in-frame fusion of TAF15 and ETV4 in a case of extraosseous Ewing sarcoma revealed in the prenatal period[J]. Virchows Arch, 2022, 481(4):665-669.
doi: 10.1007/s00428-022-03335-2 |
[30] |
GUILLON N, TIRODE F, BOEVA V, et al. The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function[J]. PLoS One, 2009, 4(3):e4932.
doi: 10.1371/journal.pone.0004932 URL |
[31] |
RIGGI N, KNOECHEL B, GILLESPIE S M, et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma[J]. Cancer Cell, 2014, 26(5):668-681.
doi: 10.1016/j.ccell.2014.10.004 pmid: 25453903 |
[32] |
GORTHI A, ROMERO J C, LORANC E, et al. EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma[J]. Nature, 2018, 555(7696):387-391.
doi: 10.1038/nature25748 URL |
[33] |
ABBOTT D, O'BRIEN S, FARNHAM J M, et al. Increased risk for other cancers in individuals with Ewing sarcoma and their relatives[J]. Cancer Med, 2019, 8(18):7924-7930.
doi: 10.1002/cam4.v8.18 URL |
[34] |
CROMPTON B D, STEWART C, TAYLOR-WEINER A, et al. The genomic landscape of pediatric Ewing sarcoma[J]. Cancer Discov, 2014, 4(11):1326-1341.
doi: 10.1158/2159-8290.CD-13-1037 pmid: 25186949 |
[35] |
SOLOMON D A, KIM T, DIAZ-MARTINEZ L A, et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer[J]. Science, 2011, 333(6045):1039-1043.
doi: 10.1126/science.1203619 pmid: 21852505 |
[36] |
PATEL M, GOMEZ N C, MCFADDEN A W, et al. PTEN deficiency mediates a reciprocal response to IGFI and mTOR inhibition[J]. Mol Cancer Res, 2014, 12(11):1610-1620.
doi: 10.1158/1541-7786.MCR-14-0006 pmid: 24994750 |
[37] |
NIEMEYER B F, PARRISH J K, SPOELSTRA N S, et al. Variable expression of PIK3R3 and PTEN in Ewing Sarcoma impacts oncogenic phenotypes[J]. PLoS One, 2015, 10(1):e0116895.
doi: 10.1371/journal.pone.0116895 URL |
[38] |
DE VITO C, RIGGI N, CORNAZ S, et al. A TARBP2-dependent miRNA expression profile underlies cancer stem cell properties and provides candidate therapeutic rea-gents in Ewing sarcoma[J]. Cancer Cell, 2012, 21(6):807-821.
doi: 10.1016/j.ccr.2012.04.023 URL |
[39] | 中国抗癌协会肉瘤专业委员会. 骨与软组织肿瘤二代测序中国专家共识(2021年版)[J]. 中国肿瘤临床, 2021, 48(20):1027-1035. |
China Anti-Cancer Association Committee of Sarcoma. Chinese expert consensus on the application of next-gene-ration sequencing for bone and soft tissue tumors (2021 version)[J]. Chin J Clin Oncol, 2021, 48(20):1027-1035. | |
[40] |
GUSHO C A, WEISS M C, LEE L, et al. The clinical uti-lity of next-generation sequencing for bone and soft tissue sarcoma[J]. Acta Oncol, 2022, 61(1):38-44.
doi: 10.1080/0284186X.2021.1992009 URL |
[41] | 唐天喜, 杨溯, 韩鹏飞, 等. 尤文肉瘤分子病理学诊断与治疗的研究新进展[J]. 基层医学论坛, 2022, 26(7):124-126. |
TANG T X, YANG S, HAN P F, et al. New progress in molecular pathology diagnosis and treatment of Ewing's sarcoma[J]. Med Forum, 2022, 26(7):124-126. | |
[42] |
ERKIZAN H V, KONG Y, MERCHANT M, et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma[J]. Nat Med, 2009, 15(7):750-756.
doi: 10.1038/nm.1983 pmid: 19584866 |
[43] |
BRENNER J C, FENG F Y, HAN S, et al. PARP-1 inhibition as a targeted strategy to treat Ewing's sarcoma[J]. Cancer Res, 2012, 72(7):1608-1613.
doi: 10.1158/0008-5472.CAN-11-3648 pmid: 22287547 |
[44] |
CORNAZ-BUROS S, RIGGI N, DEVITO C, et al. Targe-ting cancer stem-like cells as an approach to defeating cellular heterogeneity in Ewing sarcoma[J]. Cancer Res, 2014, 74(22):6610-6622.
doi: 10.1158/0008-5472.CAN-14-1106 URL |
[45] |
LAMHAMEDI-CHERRADI S E, MENEGAZ B A, RAMAMOORTHY V, et al. An Oral Formulation of YK-4-279: Preclinical Efficacy and Acquired Resistance Patterns in Ewing Sarcoma[J]. Mol Cancer Ther, 2015, 14(7):1591-1604.
doi: 10.1158/1535-7163.MCT-14-0334 URL |
[46] | LUDWIG J A, FEDERMAN N C, ANDERSON P M, et al. TK 216 for relapsed/refractory Ewing sarcoma: Interim phase 1/2 results[J]. Journal of Clinical Oncology, 2021, 39(15_suppl):11500. |
[47] |
BENNANI-BAITI I M, MACHADO I, LLOMBART-BOSCH A, et al. Lysine-specific demethylase 1 (LSD1/KDM1A/AOF2/BHC110) is expressed and is an epigenetic drug target in chondrosarcoma, Ewing's sarcoma, osteosarcoma, and rhabdomyosarcoma[J]. Hum Pathol, 2012, 43(8):1300-1307.
doi: 10.1016/j.humpath.2011.10.010 URL |
[48] |
PISHAS K I, DRENBERG C D, TASLIM C, et al. Therapeutic Targeting of KDM1A/LSD1 in Ewing Sarcoma with SP-2509 Engages the Endoplasmic Reticulum Stress Response[J]. Mol Cancer Ther, 2018, 17(9):1902-1916.
doi: 10.1158/1535-7163.MCT-18-0373 pmid: 29997151 |
[49] |
GAO Y, HE X Y, WU X S, et al. ETV6 dependency in Ewing sarcoma by antagonism of EWS-FLI1-mediated enhancer activation[J]. Nat Cell Biol, 2023, 25(2):298-308.
doi: 10.1038/s41556-022-01060-1 pmid: 36658219 |
[50] |
THOMSON D W, DINGER M E. Endogenous microRNA sponges: evidence and controversy[J]. Nat Rev Genet, 2016, 17(5):272-283.
doi: 10.1038/nrg.2016.20 pmid: 27040487 |
[51] | ROBERTO G M, VIEIRA G M, DELSIN L E A, et al. MiR-708-5p is inversely associated with EWS/FLI1 Ewi-ng sarcoma but does not represent a prognostic predictor[J]. Cancer Genet, 2019,230:21-27. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||