收稿日期: 2024-12-16
录用日期: 2025-02-28
网络出版日期: 2025-07-11
Prospective study on quantitative evaluation of femoral neck bone mineral density using spectral localizer radiograph from photon-counting detector CT
Received date: 2024-12-16
Accepted date: 2025-02-28
Online published: 2025-07-11
目的: 研究基于光子计数探测器CT(photon-counting detector CT, PCD-CT)采集的能谱定位像(spectral localizer radiograph, SLR)定量检测股骨颈的面积骨密度(areal bone mineral density, aBMD)的效能。 方法: 于2024年7月至2025年4月前瞻性纳入需接受双能量X射线吸收法(dual-energy X-ray absorptiometry, DXA)以及CT扫描这2种检查的受试者(≥18岁)。这些患者在PCD-CT上接受检查获取SLR,由2名观察者在SLR上独立、盲法测量患者左侧股骨颈的aBMD。以DXA的测量结果为标准,评估SLR对aBMD的定量准确性及针对异常骨量(T值<-1.0)的诊断效能。 结果: 本研究共纳入63名受试者(其中女性36人),平均年龄(64.30±13.20)岁,DXA测得的中位aBMD值为0.889 [四分位间距(interquartile range, IQR)为0.749~1.031] g/cm2,其中23人(36.51%)表现出异常骨量。2名观察者测量的aBMD值[中位数(IQR)表示]分别为0.879 (0.760~0.985) g/cm2和0.891 (0.784~0.977) g/cm2,基于SLR测量的aBMD值具有极好的观察者间一致性(组内相关系数为0.98)。以DXA结果为参考,SLR测量aBMD的中位百分比绝对误差为6.66% (IQR为3.64%~9.80%),基于SLR诊断异常骨量的准确率、灵敏度、特异度分别为95.24%(50/63)、95.65%(22/23)、95.00%(38/40)。 结论: 基于PCD-CT采集的能谱定位像可以准确定量股骨颈的骨密度,并表现出较高的异常骨量诊断效能。
周山税 , 秦乐 , 常蕊 , 杜联军 , 严福华 , 刘方韬 . 基于光子计数探测器CT能谱定位像定量评估股骨颈骨密度的前瞻性研究[J]. 诊断学理论与实践, 2025 , 24(02) : 163 -169 . DOI: 10.16150/j.1671-2870.2025.02.007
Objective To evaluate the performance of spectral localizer radiograph (SLR) acquired by photon-counting detector CT (PCD-CT) for the quantitative assessment of areal bone mineral density (aBMD) in the femoral neck. Methods From July 2024 to April 2025, subjects (≥18 years old) scheduled for both dual-energy X-ray absorptiometry (DXA) and CT scans were prospectively enrolled. All subjects underwent PCD-CT examinations to obtain SLR, and two observers independently performed blinded measurements of the aBMD in the left femoral neck on the SLR. The measurement results of DXA were used as the reference standard to evaluate the quantitative accuracy of SLR for aBMD and its diagnostic performance for abnormal bone mass (T-score<-1.0). Results A total of 63 subjects (36 females) were enrolled, with a mean age of 64.30±13.20 years. The median aBMD measured by DXA was 0.889 [interquartile range (IQR), 0.749-1.031] g/cm2, and 23 subjects (36.51%) showed abnormal bone mass. The aBMD values measured by the two observers were 0.879 (0.760-0.985) g/cm2 and 0.891 (0.784-0.977) g/cm2, respectively. SLR-based measurements of aBMD demonstrated excellent inter-observer agreement (intraclass correlation coefficient = 0.98). Using DXA results as the reference, the median absolute percentage error of aBMD measured by SLR was 6.66% (IQR, 3.64%-9.80%). The diagnostic accuracy, sensitivity, and specificity of SLR for diagnosing abnormal bone mass were 95.24% (50/63), 95.65% (22/23), and 95.00% (38/40), respectively. Conclusions Spectral localizer radiographs acquired by PCD-CT can accurately quantify bone mineral density in the femoral neck and demonstrate high diagnostic performance for abnormal bone mass.
| [1] | XIA W B, HE S L, XU L, et al. Rapidly increasing rates of hip fracture in Beijing, China[J]. J Bone Miner Res,2012,27(1):125-129. |
| [2] | SHEPSTONE L, LENAGHAN E, COOPER C, et al. Screening in the community to reduce fractures in older women (SCOOP): a randomised controlled trial[J]. Lancet,2018,391(10122):741-747. |
| [3] | US Preventive Services Task Force, CURRY S J, KRIST A H, et al. Screening for osteoporosis to prevent fractures: US preventive services task force recommendation statement[J]. JAMA,2018,319(24):2521-2531. |
| [4] | KANIS J A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group[J]. Osteoporos Int,1994,4(6):368-381. |
| [5] | 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2022)[J]. 中国全科医学,2023,26(14):1671-1691. |
| Chinese Society of Osteoporosis and Bone Mineral Research. Guidelines for the Diagnosis and treatment of primary osteoporosis(2022)[J]. Chin Gen Pract,2023,26(14):1671-1691. | |
| [6] | GILLESPIE C W, MORIN P E. Trends and disparities in osteoporosis screening among women in the United States, 2008-2014[J]. Am J Med,2017,130(3):306-316. |
| [7] | AMARNATH A L, FRANKS P, ROBBINS J A, et al. Underuse and overuse of osteoporosis screening in a regional health system: a retrospective cohort study[J]. J Gen Intern Med,2015,30(12):1733-1740. |
| [8] | CANN C E. Quantitative CT for determination of bone mine-ral density: a review[J]. Radiology,1988,166(2):509-522. |
| [9] | ACU K, SCHEEL M, ISSEVER A S. Time dependency of bone density estimation from computed tomography with intravenous contrast agent administration[J]. Osteoporos Int,2014,25(2):535-542. |
| [10] | KOCH V, HOKAMP N G, ALBRECHT M H, et al. Accuracy and precision of volumetric bone mineral density assessment using dual-source dual-energy versus quantitative CT: a phantom study[J]. Eur Radiol Exp,2021,5(1):43. |
| [11] | QIN L, HUANG J, YU P, et al. Accuracy, agreement, and reliability of DECT-derived vBMD measurements: an initial ex vivo study[J]. Eur Radiol,2021,31(1):191-199. |
| [12] | Expert Panel on Musculoskeletal Imaging, YU J S, KRISHNA N G, et al. ACR appropriateness criteria? osteoporosis and bone mineral density: 2022 Update[J]. J Am Coll Radiol,2022,19(11S):S417-S432. |
| [13] | KANIS J A. Diagnosis of osteoporosis and assessment of fracture risk[J]. Lancet,2002,359(9321):1929-1936. |
| [14] | 陈海燕, 杨永波, 刘璐璐,等. 光子计数探测器CT初步临床应用的研究进展[J]. 中华放射学杂志,2022,56(2):213-216. |
| CHEN H Y, YANG Y B, LIU L L, et al. Research progress of clinical application of spectrum CT based on photon-counting detector[J]. Chin J Radiol,2022,56(2):213-216. | |
| [15] | 张挽时. 光子计数CT成像技术和临床价值[J]. 中华放射学杂志,2023,57(10):1133-1136. |
| ZHANG W S. Imaging technique and clinical value of photon counting CT[J]. Chin J Radiol,2023,57(10):1133-1136. | |
| [16] | SYMONS R, KRAUSS B, SAHBAEE P, et al. Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: An in vivo study[J]. Med Phys,2017,44(10):5120-5127. |
| [17] | CHRISTNER J A, KOFLER J M, MCCOLLOUGH C H. Estimating effective dose for CT using dose-length pro-duct compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning[J]. Am J Roentgenol,2010,194(4):881-889. |
| [18] | NOLDEN M, ZELZER S, SEITEL A, et al. The medical imaging interaction toolkit: challenges and advances : 10 years of open-source development[J]. Int J Comput Assist Radiol Surg,2013,8(4):607-620. |
| [19] | DIMAI H P. Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases[J]. Bone,2017,104:39-43. |
| [20] | KANIS J A, MELTON L J 3RD, CHRISTIANSEN C, et al. The diagnosis of osteoporosis[J]. J Bone Miner Res,1994, 9(8):1137-1141. |
| [21] | LAUGERETTE A, SCHWAIGER B J, BROWN K, et al. DXA-equivalent quantification of bone mineral density using dual-layer spectral CT scout scans[J]. Eur Radiol,2019,29(9):4624-4634. |
| [22] | NOWAK T, EBERHARD M, SCHMIDT B, et al. Bone mineral density quantification from localizer radiographs: accuracy and precision of energy-integrating detector ct and photon-counting detector CT[J]. Radiology,2021,298(1):147-152. |
| [23] | EULER A, NOWAK T, BUCHER B, et al. Assessment of bone mineral density from a computed tomography topogram of photon-counting detector computed tomography-effect of phantom size and tube voltage[J]. Invest Radiol,2021,56(10):614-620. |
| [24] | SADANEY A O EL, FERRERO A, RAJENDRAN K, et al. Opportunistic bone mineral density measurement using photon-counting detector ct spectral localizer images: a prospective study[J]. Am J Roentgenol,2025,224(1):e2431909. |
| [25] | MOSER L J, KLAMBAUER K, DIAZ MACHICADO M C, et al. In vivo bone mineral density assessment with spectral localizer radiographs from photon-counting detector CT: Prospective comparison with DXA[J]. Invest Radiol,2025. |
| [26] | MORI I, MACHIDA Y, OSANAI M, et al. Photon starvation artifacts of X-ray CT: their true cause and a solution[J]. Radiol Phys Technol,2013,6(1):130-141. |
| [27] | LEMS W F, PACCOU J, ZHANG J, et al. Vertebral fracture: epidemiology, impact and use of DXA vertebral fracture assessment in fracture liaison services[J]. Osteoporos Int,2021,32(3):399-411. |
| [28] | MAZZIOTTI G, ANGELI A, BILEZIKIAN J P, et al. Glucocorticoid-induced osteoporosis: an update[J]. Trends Endocrinol Metab,2006,17(4):144-149. |
| [29] | MARCUCCI G, BELTRAMI G, TAMBURINI A, et al. Bone health in childhood cancer: review of the literature and recommendations for the management of bone health in childhood cancer survivors[J]. Ann Oncol,2019,30(6):908-920. |
/
| 〈 |
|
〉 |