[1] |
Misra S, Owen KR. Genetics of monogenic diabetes: present clinical challenges[J]. Curr Diab Rep, 2018, 18(12):141.
doi: 10.1007/s11892-018-1111-4
URL
|
[2] |
Lemelman MB, Letourneau L, Greeley SAW. Neonatal diabetes mellitus: an update on diagnosis and management[J]. Clin Perinatol, 2018, 45(1):41-59.
doi: 10.1016/j.clp.2017.10.006
|
[3] |
Hattersley AT, Greeley SAW, Polak M, et al. ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents[J]. Pediatr Diabetes, 2018, 19(Suppl 27):47-63.
doi: 10.1111/pedi.12772
URL
|
[4] |
Harris AG, Letourneau LR, Greeley SAW. Monogenic diabetes: the impact of making the right diagnosis[J]. Curr Opin Pediatr, 2018, 30(4):558-567.
doi: 10.1097/MOP.0000000000000643
URL
|
[5] |
Nansseu JR, Ngo-Um SS, Balti EV. Incidence, prevalence and genetic determinants of neonatal diabetes mellitus: a systematic review and meta-analysis protocol[J]. Syst Rev, 2016, 5(1):188.
doi: 10.1186/s13643-016-0369-3
pmid: 27832816
|
[6] |
Jacobs E, Tamayo T, Rathmann W. Epidemiologie des diabetes in Deutschland[J]. Dtsch Gesundheitsbericht Diabetes, 2017, 2017:10-21.
|
[7] |
Broome DT, Pantalone KM, Kashyap SR, et al. Approach to the patient with MODY-monogenic diabetes[J]. J Clin Endocrinol Metab, 2021, 106(1):237-250.
doi: 10.1210/clinem/dgaa710
pmid: 33034350
|
[8] |
Shepherd M, Shields B, Hammersley S, et al. Systematic population screening, using biomarkers and genetic tes-ting, identifies 2.5% of the U.K. pediatric diabetes popu-lation with monogenic diabetes[J]. Diabetes Care, 2016, 39(11):1879-1888.
pmid: 27271189
|
[9] |
Dahl A, Kumar S. Recent advances in neonatal diabetes[J]. Diabetes Metab Syndr Obes, 2020, 13:355-364.
doi: 10.2147/DMSO.S198932
URL
|
[10] |
Yahaya TO, Ufuoma SB. Genetics and pathophysiology of maturity-onset diabetes of the young (MODY): a review of current trends[J]. Oman Med J, 2020, 35(3):e126.
doi: 10.5001/omj.2020.44
URL
|
[11] |
Firdous P, Nissar K, Ali S, et al. Genetic testing of maturity-onset diabetes of the young current status and future perspectives[J]. Front Endocrinol (Lausanne), 2018, 9:253.
doi: 10.3389/fendo.2018.00253
URL
|
[12] |
Sharari S, Abou-Alloul M, Hussain K, et al. Fanconi-bickel syndrome: a review of the mechanisms that lead to dysglycaemia[J]. Int J Mol Sci, 2020, 21(17):6286.
doi: 10.3390/ijms21176286
URL
|
[13] |
Sun C, Pei Z, Zhang M, et al. Recovered insulin production after thiamine administration in permanent neonatal diabetes mellitus with a novel solute carrier family 19 member 2 (SLC19A2) mutation[J]. J Diabetes, 2018, 10(1):50-58.
doi: 10.1111/1753-0407.12556
URL
|
[14] |
Wang X, Sterr M, Burtscher I, et al. Genome-wide analysis of PDX1 target genes in human pancreatic progenitors[J]. Mol Metab, 2018, 9:57-68.
doi: 10.1016/j.molmet.2018.01.011
URL
|
[15] |
Trott J, Alpagu Y, Tan EK, et al. Mitchell-Riley syndrome iPSCs exhibit reduced pancreatic endoderm differentiation due to a mutation in RFX6[J]. Development, 2020, 147(21):dev194878.
|
[16] |
Solorzano-Vargas RS, Bjerknes M, Wang J, et al. Null mutations of NEUROG3 are associated with delayed-onset diabetes mellitus[J]. JCI Insight, 2020, 5(1):e127657.
doi: 10.1172/jci.insight.127657
URL
|
[17] |
Hancili S, Bonnefond A, Philippe J, et al. A novel NEUROG3 mutation in neonatal diabetes associated with a neuro-intestinal syndrome[J]. Pediatr Diabetes, 2018, 19(3):381-387.
doi: 10.1111/pedi.12576
pmid: 28940958
|
[18] |
Girard R, Darsigny M, Jones C, et al. HNF4α is a novel regulator of intestinal glucose-dependent insulinotropic polypeptide[J]. Sci Rep, 2019, 9(1):4200
doi: 10.1038/s41598-019-41061-z
URL
|
[19] |
Letourneau LR, Greeley SAW. Congenital forms of diabetes: the beta-cell and beyond[J]. Curr Opin Genet Dev, 2018, 50:25-34.
doi: S0959-437X(17)30131-4
pmid: 29454299
|
[20] |
Jamee M, Zaki-Dizaji M, Lo B, et al. Clinical, immunological, and genetic features in patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-like syndrome[J]. J Allergy Clin Immunol Pract, 2020, 8(8):2747-2760,e7.
doi: 10.1016/j.jaip.2020.04.070
URL
|
[21] |
Delvecchio M, Iacoviello M, Pantaleo A, et al. Clinical spectrum associated with wolfram syndrome type 1 and type 2: a review on genotype-phenotype correlations[J]. Int J Environ Res Public Health, 2021, 18(9):4796.
doi: 10.3390/ijerph18094796
URL
|
[22] |
Gaál Z, Balogh I. Monogenic forms of diabetes mellitus[J]. Exp Suppl, 2019, 111:385-416.
|
[23] |
American Diabetes Association. 2. Classification and dia-gnosis of diabetes: standards of medical care in diabetes-2020[J]. Diabetes Care, 2020, 43(Suppl 1):S14-S31.
doi: 10.2337/dc20-S002
URL
|
[24] |
中华医学会儿科学分会内分泌遗传代谢学组. 儿童单基因糖尿病临床诊断与治疗专家共识[J]. 中华儿科杂志, 2019, 57(7):508-514.
|
[25] |
Zhang M, Chen X, Shen S, et al. Sulfonylurea in the treatment of neonatal diabetes mellitus children with hete-rogeneous genetic backgrounds[J]. J Pediatr Endocrinol Metab, 2015, 28(7-8):877-884.
|
[26] |
Beltrand J, Elie C, Busiah K, et al. Sulfonylurea therapy benefits neurological and psychomotor functions in patients with neonatal diabetes owing to potassium channel mutations[J]. Diabetes Care, 2015, 38(11):2033-2041.
doi: 10.2337/dc15-0837
pmid: 26438614
|
[27] |
Huang Q, Liu X, Zhang Y, et al. Molecular feature and therapeutic perspectives of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome[J]. J Genet Genomics, 2020, 20, 47(1):17-26.
|
[28] |
Ortigoza-Escobar JD, Molero-Luis M, Arias A, et al. Treatment of genetic defects of thiamine transport and metabolism[J]. Expert Rev Neurother, 2016, 16(7):755-763.
doi: 10.1080/14737175.2016.1187562
pmid: 27191787
|
[29] |
Mohan V, Radha V. Precision Diabetes Is slowly beco-ming a Reality[J]. Med Princ Pract, 2019, 28(1):1-9.
doi: 10.1159/000497241
URL
|