1. |
M. Pilz da Cunha, M.G. Debije, A.P.H.J. Schenning, Bioinspired light-driven soft robots based on liquid crystal polymers. Chem. Soc. Rev. 49, 6568-6578 ( 2020). https://doi.org/10.1039/d0cs00363h
|
2. |
|
3. |
J. Ma, Y. Yang, C. Valenzuela, X. Zhang, L. Wang et al., Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds. Angew. Chem. Int. Ed. 61, e202116219 ( 2022). https://doi.org/10.1002/anie.202116219
|
4. |
S. Iravani, R.S. Varma, Bioinspired and biomimetic MXene-based structures with fascinating properties: recent advances. Mater. Adv. 3, 4783-4796 ( 2022). https://doi.org/10.1039/D2MA00151A
|
5. |
H. Galinski, G. Favraud, H. Dong, J.S.T. Gongora, G. Favaro et al., Scalable, ultra-resistant structural colors based on network metamaterials. Light Sci. Appl. 6, e16233 ( 2017). https://doi.org/10.1038/lsa.2016.233
|
6. |
|
7. |
|
8. |
S.D. Rezaei, Z. Dong, J.Y. Chan, J. Trisno, R.J. Ng, Q. Ruan, C.W. Qiu, N.A. Mortensen, J.K. Yang, Nanophotonic structural colors. ACS Photonics 8, 18-33 ( 2021). https://doi.org/10.1021/acsphotonics.0c00947
|
9. |
V. Shukla, The tunable electric and magnetic properties of 2D MXenes and their potential applications. Mater. Adv. 1, 3104-3121 ( 2020). https://doi.org/10.1039/D0MA00548G
|
10. |
|
11. |
X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235-258 ( 2020). https://doi.org/10.1039/C9NH00571D
|
12. |
A. Ahmed, S. Sharma, B. Adak, M.M. Hossain, A.M. LaChance et al., Two-dimensional MXenes: new frontier of wearable and flexible electronics. InfoMat 4, e12295 ( 2022). https://doi.org/10.1002/inf2.12295
|
13. |
Z. Chen, H. Wang, Y. Cao, Y. Chen, O. Akkus et al., Bio-inspired anisotropic hydrogels and their applications in soft actuators and robots. Matter 6, 3803-3837 ( 2023). https://doi.org/10.1016/j.matt.2023.08.011
|
14. |
|
15. |
Z.-H. Tang, W.-B. Zhu, Y.-Q. Mao, Z.-C. Zhu, Y.-Q. Li et al., Multiresponsive Ti 3C 2T x MXene-based actuators enabled by dual-mechanism synergism for soft robotics. ACS Appl. Mater. Interfaces 14, 21474-21485 ( 2022). https://doi.org/10.1021/acsami.2c03157
|
16. |
|
17. |
|
18. |
|
19. |
|
20. |
|
21. |
|
22. |
A. Rosenkranz, M. Marian, Combining surface textures and MXene coatings—towards enhanced wear-resistance and durability. Surf. Topogr. Metrol. Prop. 10, 033001 ( 2022). https://doi.org/10.1088/2051-672x/ac7f4a
|
23. |
M. Yang, Y. Xu, X. Zhang, H.K. Bisoyi, P. Xue et al., Bioinspired phototropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics. Adv. Funct. Mater. 32, 2270152 ( 2022). https://doi.org/10.1002/adfm.202270152
|
24. |
T. Zhao, H. Liu, L. Yuan, X. Tian, X. Xue et al., A multi-responsive MXene-based actuator with integrated sensing function. Adv. Mater. Interfaces 9, 2101948 ( 2022). https://doi.org/10.1002/admi.202101948
|
25. |
|
26. |
P. Xue, H.K. Bisoyi, Y. Chen, H. Zeng, J. Yang et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60, 3390-3396 ( 2021). https://doi.org/10.1002/anie.202014533
|
27. |
|
28. |
J. Cao, Z. Zhou, Q. Song, K. Chen, G. Su et al., Ultrarobust Ti 3C 2T x MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano 14, 7055-7065 ( 2020). https://doi.org/10.1021/acsnano.0c01779
|
29. |
S. Ma, P. Xue, C. Valenzuela, X. Zhang, Y. Chen et al., Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators. Adv. Funct. Mater. ( 2023). https://doi.org/10.1002/adfm.202309899
|
30. |
P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15, 1 ( 2022). https://doi.org/10.1007/s40820-022-00977-4
|
31. |
V. Hwang, A.B. Stephenson, S. Barkley, S. Brandt, M. Xiao et al., Designing angle-independent structural colors using Monte Carlo simulations of multiple scattering. Proc. Natl. Acad. Sci. U.S.A. 118, e 2015551118 ( 2021). https://doi.org/10.1073/pnas.2015551118
|
32. |
|
33. |
A.D. Khalid, N. Ur-Rehman, G.H. Tariq, S. Ullah, S.A. Buzdar et al., Functional bioinspired nanocomposites for anticancer activity with generation of reactive oxygen species. Chemosphere 310, 136885 ( 2023). https://doi.org/10.1016/j.chemosphere.2022.136885
|
34. |
|
35. |
S.V. Patwardhan, J.R.H. Manning, M. Chiacchia, Bioinspired synthesis as a potential green method for the preparation of nanomaterials: opportunities and challenges. Curr. Opin. Green Sustain. Chem. 12, 110-116 ( 2018). https://doi.org/10.1016/j.cogsc.2018.08.004
|
36. |
Z. Zhang, Z. Chen, L. Sun, X. Zhang, Y. Zhao, Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Res. 12, 1579-1584 ( 2019). https://doi.org/10.1007/s12274-019-2395-7
|
37. |
L. Cai, Y. Wang, L. Sun, J. Guo, Y. Zhao, Bio-inspired multi-responsive structural color hydrogel with constant volume and wide viewing angles. Adv. Opt. Mater. 9, 2100831 ( 2021). https://doi.org/10.1002/adom.202100831
|
38. |
Y. Feng, J. Sun, L. Xu, W. Hong, Angle-independent structurally colored materials with superhydrophobicity and self-healing capability. Adv. Mater. Interfaces 8, 2001950 ( 2021). https://doi.org/10.1002/admi.202001950
|
39. |
J. Chen, H.-M. Liu, H. Ren, Y.-F. Zhang, H.-Y. Hou et al., Semitransparent organic solar cells with viewing-angle-independent Janus structural colors. Adv. Opt. Mater. 11, 2201848 ( 2023). https://doi.org/10.1002/adom.202201848
|
40. |
J. Zhou, P. Han, M. Liu, H. Zhou, Y. Zhang et al., Self-healable organogel nanocomposite with angle-independent structural colors. Angew. Chem. Int. Ed. 56, 10462-10466 ( 2017). https://doi.org/10.1002/anie.201705462
|
41. |
J. Mu, G. Wang, H. Yan, H. Li, X. Wang et al., Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nat. Commun. 9, 590 ( 2018). https://doi.org/10.1038/s41467-018-03032-2
|
42. |
|
43. |
J. Gao, Y. Tang, D. Martella, J. Guo, D.S. Wiersma et al., Stimuli-responsive photonic actuators for integrated biomimetic and intelligent systems. Respon. Mater. 1, 230008 ( 2023). https://doi.org/10.1002/rpm.20230008
|
44. |
Z. Liu, H.K. Bisoyi, Y. Huang, M. Wang, H. Yang et al., Thermo- and mechanochromic camouflage and self-healing in biomimetic soft actuators based on liquid crystal elastomers. Angew. Chem. Int. Ed. 61, e202115755 ( 2022). https://doi.org/10.1002/anie.202115755
|
45. |
|
46. |
X. Li, Y. Yang, C. Valenzuela, X. Zhang, P. Xue et al., Mechanochromic and conductive chiral nematic nanostructured film for bioinspired ionic skins. ACS Nano 17, 12829-12841 ( 2023). https://doi.org/10.1021/acsnano.3c04199
|
47. |
X. Zhang, Y. Yang, P. Xue, C. Valenzuela, Y. Chen et al., Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage. Angew. Chem. Int. Ed. 61, e202211030 ( 2022). https://doi.org/10.1002/anie.202211030
|
48. |
Y. Hao, S. Zhang, B. Fang, F. Sun, H. Liu et al., A review of smart materials for the boost of soft actuators, soft sensors, and robotics applications. Chin. J. Mech. Eng. 35, 37 ( 2022). https://doi.org/10.1186/s10033-022-00707-2
|
49. |
L. Chang, D. Wang, Z. Huang, C. Wang, J. Torop et al., A versatile ionomer-based soft actuator with multi-stimulus responses, self-sustainable locomotion, and photoelectric conversion. Adv. Funct. Mater. 33, 2212341 ( 2023). https://doi.org/10.1002/adfm.202212341
|
50. |
L. Xu, F. Xue, H. Zheng, Q. Ji, C. Qiu et al., An insect larvae inspired MXene-based jumping actuator with controllable motion powered by light. Nano Energy 103, 107848 ( 2022). https://doi.org/10.1016/j.nanoen.2022.107848
|
51. |
|
52. |
|
53. |
X. Tang, H. Li, T. Ma, Y. Yang, J. Luo et al., A review of soft actuator motion: actuation, design, manufacturing and applications. Actuators 11, 331 ( 2022). https://doi.org/10.3390/act11110331
|
54. |
A. Pagoli, F. Chapelle, J.-A. Corrales-Ramon, Y. Mezouar, Y. Lapusta, Review of soft fluidic actuators: classification and materials modeling analysis. Smart Mater. Struct. 31, 013001 ( 2022). https://doi.org/10.1088/1361-665x/ac383a
|
55. |
H.S. Kang, S.W. Han, C. Park, S.W. Lee, H. Eoh et al., 3D touchless multiorder reflection structural color sensing display. Sci. Adv. 6, eabb5769 ( 2020). https://doi.org/10.1126/sciadv.abb5769
|
56. |
|
57. |
F. Meng, Z. Wang, S. Zhang, B. Ju, B. Tang, Bioinspired quasi-amorphous structural color materials toward architectural designs. Cell Rep. Phys. Sci. 2, 100499 ( 2021). https://doi.org/10.1016/j.xcrp.2021.100499
|
58. |
L. Xu, H. Zheng, F. Xue, Q. Ji, C. Qiu et al., Bioinspired multi-stimulus responsive MXene-based soft actuator with self-sensing function and various biomimetic locomotion. Chem. Eng. J. 463, 142392 ( 2023). https://doi.org/10.1016/j.cej.2023.142392
|
59. |
M. Xu, L. Li, W. Zhang, Z. Ren, J. Liu et al., MXene-based soft actuators with multiresponse and diverse applications by a simple method. Macromol. Mater. Eng. 308, 2300200 ( 2023). https://doi.org/10.1002/mame.202300200
|
60. |
A. Ahmed, M.M. Hossain, B. Adak, S. Mukhopadhyay, Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications. Chem. Mater. 32, 10296-10320 ( 2020). https://doi.org/10.1021/acs.chemmater.0c03392
|
61. |
F. Bian, L. Sun, L. Cai, Y. Wang, Y. Zhao, Bioinspired MXene-integrated colloidal crystal arrays for multichannel bioinformation coding. Proc. Natl. Acad. Sci. U.S.A. 117, 22736-22742 ( 2020). https://doi.org/10.1073/pnas.2011660117
|
62. |
J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu et al., Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 7, 1281-1286 ( 2019). https://doi.org/10.1039/C8TA10574J
|
63. |
L.P. Hao, A. Hanan, R. Walvekar, M. Khalid, F. Bibi et al., Synergistic integration of MXene and metal-organic frameworks for enhanced electrocatalytic hydrogen evolution in an alkaline environment. Catalysts 13, 802 ( 2023). https://doi.org/10.3390/catal13050802
|
64. |
B. Cheng, P. Wu, Scalable fabrication of kevlar/Ti 3C 2T x MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 15, 8676-8685 ( 2021). https://doi.org/10.1021/acsnano.1c00749
|
65. |
|
66. |
|
67. |
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti 3C 2T x MXene films with outstanding conductivity. Adv. Mater. 32, e2001093 ( 2020). https://doi.org/10.1002/adma.202001093
|
68. |
M. Lalegani Dezaki, M. Bodaghi, A review of recent manufacturing technologies for sustainable soft actuators. Int. J. Precis. Eng. Manuf. Green Technol. 10, 1661-1710 ( 2023). https://doi.org/10.1007/s40684-023-00533-4
|
69. |
A. Bhat, S. Anwer, K.S. Bhat, M.I.H. Mohideen, K. Liao et al., Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. NPJ 2D Mater. Appl. 5, 61 ( 2021). https://doi.org/10.1038/s41699-021-00239-8
|
70. |
|
71. |
P. Xue, C. Valenzuela, S. Ma, X. Zhang, J. Ma et al., Highly conductive MXene/PEDOT: PSS-integrated poly( N-isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators. Adv. Funct. Mater. 33, 2214867 ( 2023). https://doi.org/10.1002/adfm.202214867
|
72. |
J. Ma, Z. Cui, Y. Du, J. Zhang, C. Sun et al., Wearable fiber-based supercapacitors enabled by additive-free aqueous MXene inks for self-powering healthcare sensors. Adv. Fiber Mater. 4, 1535-1544 ( 2022). https://doi.org/10.1007/s42765-022-00187-y
|
73. |
J. Ma, K. Yang, Y. Jiang, L. Shen, H. Ma et al., Integrating MXene waste materials into value-added products for smart wearable self-powered healthcare monitoring. Cell Rep. Phys. Sci. 3, 100908 ( 2022). https://doi.org/10.1016/j.xcrp.2022.100908
|
74. |
Y. Hu, L. Yang, Q. Yan, Q. Ji, L. Chang et al., Self-locomotive soft actuator based on asymmetric microstructural Ti 3C 2T x MXene film driven by natural sunlight fluctuation. ACS Nano 15, 5294-5306 ( 2021). https://doi.org/10.1021/acsnano.0c10797
|
75. |
P. Li, N. Su, Z. Wang, J. Qiu, A Ti 3C 2T x MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability. ACS Nano 15, 16811-16818 ( 2021). https://doi.org/10.1021/acsnano.1c07186
|
76. |
X. Guan, Z. Yang, M. Zhou, L. Yang, R. Peymanfar et al., 2D MXene nanomaterials: synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 3, 2200102 ( 2022). https://doi.org/10.1002/sstr.202200102
|
77. |
A. Rozmysłowska-Wojciechowska, A. Szuplewska, T. Wojciechowski, S. Poźniak, J. Mitrzak et al., A simple, low-cost and green method for controlling the cytotoxicity of MXenes. Mater Sci. Eng. C Mater. Biol. Appl. 111, 110790 ( 2020). https://doi.org/10.1016/j.msec.2020.110790
|
78. |
|
79. |
|
80. |
H. Meng, X. Yang, Y. Wang, C. Wang, W. Ye et al., Bio-inspired fluorescence color-tunable soft actuators with a self-healing and reconfigurable nature. Mater. Today Chem. 24, 100855 ( 2022). https://doi.org/10.1016/j.mtchem.2022.100855
|
81. |
G.P. Awasthi, B. Maharjan, S. Shrestha, D.P. Bhattarai, D. Yoon et al., Synthesis, characterizations, and biocompatibility evaluation of polycaprolactone-MXene electrospun fibers. Colloids Surf. A Physicochem. Eng. Aspects 586, 124282 ( 2020). https://doi.org/10.1016/j.colsurfa.2019.124282
|
82. |
Y. Liu, H. Zhou, W. Zhou, S. Meng, C. Qi et al. Biocompatible, high-performance, wet-adhesive, stretchable all-hydrogel supercapacitor implant based on PANI@rGO/mxenes electrode and hydrogel electrolyte. Adv. Energy Mater. 11, 2101329 ( 2021). https://doi.org/10.1002/aenm.202101329
|
83. |
S. Sagadevan, W.-C. Oh, Comprehensive utilization and biomedical application of MXenes: a systematic review of cytotoxicity and biocompatibility. J. Drug Deliv. Sci. Technol. 85, 104569 ( 2023). https://doi.org/10.1016/j.jddst.2023.104569
|
84. |
K. Chen, Y. Hu, F. Wang, M. Liu, P. Liu et al., Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors. Colloids Surf. A Physicochem. Eng. Aspects 645, 128897 ( 2022). https://doi.org/10.1016/j.colsurfa.2022.128897
|
85. |
H. Li, X. Ru, Y. Song, H. Wang, C. Yang et al., Flexible and self-healing 3D MXene/reduced graphene oxide/polyurethane composites for high-performance electromagnetic interference shielding. Compos. Sci. Technol. 227, 109602 ( 2022). https://doi.org/10.1016/j.compscitech.2022.109602
|
86. |
A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15, 100 ( 2023). https://doi.org/10.1007/s40820-023-01074-w
|
87. |
|
88. |
S. Luo, Z. Wu, J. Zhao, Z. Luo, Q. Qiu et al., ZIF-67 derivative decorated MXene for a highly integrated flexible self-powered photodetector. ACS Appl. Mater. Interfaces 14, 19725-19735 ( 2022). https://doi.org/10.1021/acsami.2c03148
|
89. |
M. Wang, W. Liu, X. Shi, Y. Cong, S. Lin et al., Self-powered and low-temperature resistant MXene-modified electronic-skin for multifunctional sensing. Chem. Commun. 57, 8790-8793 ( 2021). https://doi.org/10.1039/D1CC02211C
|
90. |
Q. Yi, X. Pei, P. Das, H. Qin, S.W. Lee et al., A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 101, 107511 ( 2022). https://doi.org/10.1016/j.nanoen.2022.107511
|
91. |
|
92. |
H. Huang, R. Jiang, Y. Feng, H. Ouyang, N. Zhou et al., Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 12, 1325-1338 ( 2020). https://doi.org/10.1039/C9NR07616F
|
93. |
|